Cookies?
Library Header Image
LSE Research Online LSE Library Services

The law of one price in quadratic hedging and mean–variance portfolio selection

Černý, Aleš and Czichowsky, Christoph ORCID: 0000-0002-3513-6843 (2024) The law of one price in quadratic hedging and mean–variance portfolio selection. Finance and Stochastics. ISSN 0949-2984 (In Press)

[img] Text (MV_LOP_Revision_2024-09-16) - Accepted Version
Pending embargo until 1 January 2100.

Download (599kB)

Abstract

The law of one price (LOP) broadly asserts that identical financial flows should command the same price. We show that, when properly formulated, LOP is the minimal condition for a well defined mean–variance portfolio selection framework without degeneracy. Crucially, the paper identifies a new mechanism through which LOP can fail in a continuous-time L2 setting without frictions, namely ‘trading from just before a predictable stopping time’, which surprisingly identifies LOP violations even for continuous price processes. Closing this loophole allows to give a version of the “Fundamental Theorem of Asset Pricing” appropriate in the quadratic context, establishing the equivalence of the economic concept of LOP with the probabilistic property of the existence of a local E -martingale state price density. The latter provides unique prices for all square-integrable claims in an extended market and subsequently plays an important role in quadratic hedging and mean–variance portfolio selection. Mathematically, we formulate a novel variant of the uniform boundedness principle for conditionally linear functionals on the L0 module of conditionally square-integrable random variables. We then study the representation of time-consistent families of such functionals in terms of stochastic exponentials of a fixed local martingale.

Item Type: Article
Additional Information: © 2024
Divisions: Mathematics
Subjects: Q Science > QA Mathematics
H Social Sciences > HG Finance
JEL classification: G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice; Investment Decisions
G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing; Trading volume; Bond Interest Rates
C - Mathematical and Quantitative Methods > C6 - Mathematical Methods and Programming > C61 - Optimization Techniques; Programming Models; Dynamic Analysis
Date Deposited: 21 Oct 2024 09:18
Last Modified: 06 Jan 2025 09:00
URI: http://eprints.lse.ac.uk/id/eprint/125805

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics