Library Header Image
LSE Research Online LSE Library Services

Embedding into bipartite graphs

Böttcher, Julia, Heinig, Peter and Taraz, Anusch (2010) Embedding into bipartite graphs. SIAM Journal on Discrete Mathematics, 24 (4). pp. 1215-1233. ISSN 0895-4801

Full text not available from this repository.
Identification Number: 10.1137/090765481


The conjecture of Bollobás and Komlós, recently proved by Böttcher, Schacht, and Taraz [Math. Ann., 343 (2009), pp. 175–205], implies that for any $\gamma>0$, every balanced bipartite graph on $2n$ vertices with bounded degree and sublinear bandwidth appears as a subgraph of any $2n$-vertex graph $G$ with minimum degree $(1+\gamma)n$, provided that $n$ is sufficiently large. We show that this threshold can be cut in half to an essentially best-possible minimum degree of $(\frac{1}{2}+\gamma)n$ when we have the additional structural information of the host graph $G$ being balanced bipartite. This complements results of Zhao [SIAM J. Discrete Math., 23 (2009), pp. 888–900], as well as Hladký and Schacht [SIAM J. Discrete Math., 24 (2010), pp. 357–362], who determined a corresponding minimum degree threshold for $K_{r,s}$-factors, with $r$ and $s$ fixed. Moreover, our result can be used to prove that in every balanced bipartite graph $G$ on $2n$ vertices with minimum degree $(\frac{1}{2}+\gamma)n$ and $n$ sufficiently large, the set of Hamilton cycles of $G$ is a generating system for its cycle space.

Item Type: Article
Official URL:
Additional Information: © 2010 Society for Industrial and Applied Mathematics
Divisions: Mathematics
Subjects: Q Science > QA Mathematics
Sets: Departments > Mathematics
Date Deposited: 28 May 2012 15:15
Last Modified: 20 May 2021 00:15

Actions (login required)

View Item View Item