|  | Up a level | 
    Hayter, A. J., Kiatsupaibul, S., Liu, W. and Wynn, H. P.  ORCID: 0000-0002-6448-1080 
  
(2012)
An independence point method of confidence band construction for multiple linear regression models.
    Communications in Statistics - Theory and Methods, 41 (22).
     pp. 4132-4141.
     ISSN 0361-0926
ORCID: 0000-0002-6448-1080 
  
(2012)
An independence point method of confidence band construction for multiple linear regression models.
    Communications in Statistics - Theory and Methods, 41 (22).
     pp. 4132-4141.
     ISSN 0361-0926
  
  
    Liu, W., Bretz, F., Hayter, A. J. and Wynn, Henry  ORCID: 0000-0002-6448-1080 
  
(2009)
Assessing nonsuperiority, noninferiority, or equivalence when comparing two regression models over a restricted covariate region.
    Biometrics, 65 (4).
     pp. 1279-1287.
     ISSN 1541-0420
ORCID: 0000-0002-6448-1080 
  
(2009)
Assessing nonsuperiority, noninferiority, or equivalence when comparing two regression models over a restricted covariate region.
    Biometrics, 65 (4).
     pp. 1279-1287.
     ISSN 1541-0420
  
  
    Liu, Wei, Wynn, H. P.  ORCID: 0000-0002-6448-1080 and Hayter, A. J. 
  
(2008)
Statistical inferences for linear regression models when the covariates have functional relationships: polynomial regression.
    Journal of Statistical Computation and Simulation, 78 (4).
     pp. 315-324.
     ISSN 0094-9655
ORCID: 0000-0002-6448-1080 and Hayter, A. J. 
  
(2008)
Statistical inferences for linear regression models when the covariates have functional relationships: polynomial regression.
    Journal of Statistical Computation and Simulation, 78 (4).
     pp. 315-324.
     ISSN 0094-9655
  
  
    Hayter, A. J., Liu, W. and Wynn, Henry P.  ORCID: 0000-0002-6448-1080 
  
(2007)
Easy-to-construct confidence bands for comparing two simple linear regression lines.
    Journal of Statistical Planning and Inference, 137 (4).
     pp. 1213-1225.
     ISSN 0378-3758
ORCID: 0000-0002-6448-1080 
  
(2007)
Easy-to-construct confidence bands for comparing two simple linear regression lines.
    Journal of Statistical Planning and Inference, 137 (4).
     pp. 1213-1225.
     ISSN 0378-3758