van den Heuvel, Jan ORCID: 0000-0003-0897-9148 and Wood, David R.
(2018)
Improper colourings inspired by Hadwiger’s conjecture.
Journal of the London Mathematical Society, 98 (1).
129 - 148.
ISSN 0024-6107
Abstract
Hadwiger’s Conjecture asserts that every Kt-minor-free graph has a proper (t − 1)-colouring. We relax the conclusion in Hadwiger’s Conjecture via improper colourings. We prove that every Kt-minor-free graph is (2t − 2)-colourable with monochromatic components of order at most 1/2 (t − 2). This result has no more colours and much smaller monochromatic components than all previous results in this direction. We then prove that every Kt-minor-free graph is (t − 1)-colourable with monochromatic degree at most t − 2. This is the best known degree bound for such a result. Both these theorems are based on a decomposition method of independent interest. We give analogous results for Ks,t-minorfree graphs, which lead to improved bounds on generalised colouring numbers for these classes. Finally, we prove that graphs containing no Kt-immersion are 2-colourable with bounded monochromatic degree.
Actions (login required)
|
View Item |