Allen, Peter ORCID: 0000-0001-6555-3501, Böttcher, Julia ORCID: 0000-0002-4104-3635, Hàn, Hiệp, Kohayakawa, Yoshiharu and Person, Yury (2013) An approximate blow-up lemma for sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics, 44. pp. 393-398. ISSN 1571-0653
Full text not available from this repository.
Identification Number: 10.1016/j.endm.2013.10.061
Abstract
We state a sparse approximate version of the blow-up lemma, showing that regular partitions in sufficiently pseudorandom graphs behave almost like complete partite graphs for embedding graphs with maximum degree δ. We show that (p, γ)-jumbled graphs, with γ=o(pmax(2δ,δ+3/2)n), are "sufficiently pseudorandom".The approach extends to random graphs Gn,p with p≫(lognn)1/δ
Item Type: | Article |
---|---|
Official URL: | http://www.elsevier.com/journals/electronic-notes-... |
Additional Information: | © 2013 Elsevier B.V. |
Divisions: | Mathematics |
Subjects: | Q Science > QA Mathematics |
Date Deposited: | 16 Dec 2013 14:13 |
Last Modified: | 12 Dec 2024 00:28 |
URI: | http://eprints.lse.ac.uk/id/eprint/54939 |
Actions (login required)
View Item |