Cookies?
Library Header Image
LSE Research Online LSE Library Services

Betti numbers of polynomial hierarchical models for experimental designs

Maruri-Aguilar, Hugo, Saenz-de-Cabezon, Eduardo and Wynn, Henry P. ORCID: 0000-0002-6448-1080 (2012) Betti numbers of polynomial hierarchical models for experimental designs. Annals of Mathematics and Artificial Intelligence, 64 (4). pp. 411-426. ISSN 1012-2443

Full text not available from this repository.

Identification Number: 10.1007/s10472-012-9295-9

Abstract

Polynomial models, in statistics, interpolation and other fields, relate an output η to a set of input variables (factors), x = (x 1,..., x d), via a polynomial η(x 1,..., x d). The monomials terms in η(x) are sometimes referred to as "main effect" terms such as x 1, x 2, ..., or "interactions" such as x 1x 2, x 1x 3, ... Two theories are related in this paper. First, when the models are hierarchical, in a well-defined sense, there is an associated monomial ideal generated by monomials not in the model. Second, the so-called "algebraic method in experimental design" generates hierarchical models which are identifiable when observations are interpolated with η(x) based at a finite set of points: the design. We study conditions under which ideals associated with hierarchical polynomial models have maximal Betti numbers in the sense of Bigatti (Commun Algebra 21(7):2317-2334, 1993). This can be achieved for certain models which also have minimal average degree in the design theory, namely "corner cut models".

Item Type: Article
Official URL: http://www.springer.com/computer/ai/journal/10472
Additional Information: © 2012 Springer
Divisions: LSE
Subjects: H Social Sciences > HA Statistics
Q Science > QA Mathematics
Date Deposited: 23 May 2012 11:06
Last Modified: 13 Sep 2024 23:20
URI: http://eprints.lse.ac.uk/id/eprint/43870

Actions (login required)

View Item View Item