Cookies?
Library Header Image
LSE Research Online LSE Library Services

Financial risk forecasting: the theory and practice of forecasting market risk with implementation in R and Matlab

Danielsson, Jon ORCID: 0009-0006-9844-7960 (2011) Financial risk forecasting: the theory and practice of forecasting market risk with implementation in R and Matlab. Wiley-Blackwell. ISBN 9780470669433

Full text not available from this repository.

Abstract

Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.

Item Type: Book
Official URL: http://eu.wiley.com/WileyCDA/
Additional Information: © 2011 Wiley-Blackwell
Divisions: Finance
Financial Markets Group
Subjects: H Social Sciences > HG Finance
JEL classification: C - Mathematical and Quantitative Methods > C2 - Econometric Methods: Single Equation Models; Single Variables > C22 - Time-Series Models
C - Mathematical and Quantitative Methods > C3 - Econometric Methods: Multiple; Simultaneous Equation Models; Multiple Variables; Endogenous Regressors > C32 - Time-Series Models
C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Other Model Applications
G - Financial Economics > G3 - Corporate Finance and Governance > G32 - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure
Date Deposited: 13 Jul 2011 12:22
Last Modified: 01 Oct 2024 03:22
URI: http://eprints.lse.ac.uk/id/eprint/37380

Actions (login required)

View Item View Item