Baurdoux, Erik J. ORCID: 0000-0002-5407-0683, Kyprianou, Andreas E. and Pardo, J.C.
(2011)
The Gapeev-Kuhn stochastic game driven by a spectrally positive Levy process.
Stochastic Processes and Their Applications, 121 (6).
pp. 1266-1289.
ISSN 0304-4149
Abstract
In Gapeev and Kuhn (2005) [8], the Dynkin game corresponding to perpetual convertible bonds was considered, when driven by a Brownian motion and a compound Poisson process with exponential jumps. We consider the same stochastic game but driven by a spectrally positive Levy process. We establish a complete solution to the game indicating four principle parameter regimes as well as characterizing the occurrence of continuous and smooth fit. In Gapeev and Kuhn (2005) [8], the method of proof was mainly based on solving a free boundary value problem. In this paper, we instead use fluctuation theory and an auxiliary optimal stopping problem to find a solution to the game.
Actions (login required)
|
View Item |