Kohayakawa, Yoshiharu, Rödl, Vojtech, Schacht, Mathias and Skokan, Jozef 
ORCID: 0000-0003-3996-7676 
  
(2010)
On the triangle removal lemma for subgraphs of sparse pseudorandom graphs.
    
      In: Barany, Imre, Solymosi, József and Sagi, Gabor, (eds.)
      An Irregular Mind: Szemerédi Is 70.
    
      Bolyai Society mathematical studies (21).
    
    Springer Berlin / Heidelberg, New York, USA, pp. 359-404.
     ISBN 9783642144431
  
  
  
Abstract
We study an extension of the triangle removal lemma of Ruzsa and Szemeredi [Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, North-Holland, Amsterdam, 1978, pp. 939-945], which gave rise to a purely combinatorial proof of the fact that sets of integers of positive upper density contain three-term arithmetic progressions, a result first proved by Roth [On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109].
| Item Type: | Book Section | 
|---|---|
| Official URL: | http://www.springer.com | 
| Additional Information: | © 2010 Springer Science+Business Media | 
| Divisions: | Mathematics | 
| Subjects: | Q Science > QA Mathematics | 
| Date Deposited: | 11 May 2011 13:19 | 
| Last Modified: | 11 Sep 2025 01:09 | 
| URI: | http://eprints.lse.ac.uk/id/eprint/36089 | 
Actions (login required)
![]()  | 
        View Item | 
                                    