Csikós, Balázs, Kiss, György, Swanepoel, Konrad ORCID: 0000-0002-1668-887X and Oloff de Wet, P. (2009) Large antipodal families. Periodica Mathematica Hungarica, 58 (2). pp. 129-138. ISSN 0031-5303
Full text not available from this repository.
Identification Number: 10.1007/s10998-009-10129-9
Abstract
A family {A i | i ∈ I} of sets in ℝ d is antipodal if for any distinct i, j ∈ I and any p ∈ A i , q ∈ A j , there is a linear functional ϕ:ℝ d → ℝ such that ϕ(p) ≠ ϕ(q) and ϕ(p) ≤ ϕ(r) ≤ ϕ(q) for all r ∈ ∪ i∈I A i . We study the existence of antipodal families of large finite or infinite sets in ℝ3.
Item Type: | Article |
---|---|
Official URL: | http://www.springer.com/math/journal/10998 |
Additional Information: | © 2009 Springer |
Divisions: | Mathematics |
Subjects: | Q Science > QA Mathematics |
Date Deposited: | 09 Oct 2009 09:46 |
Last Modified: | 11 Dec 2024 23:29 |
URI: | http://eprints.lse.ac.uk/id/eprint/25411 |
Actions (login required)
View Item |