Cookies?
Library Header Image
LSE Research Online LSE Library Services

Variable selection in latent variable models via knockoffs: an application to international large-scale assessment in education

Xie, Zilong, Chen, Yunxiao ORCID: 0000-0002-7215-2324, von Davier, Matthias and Weng, Haolei (2023) Variable selection in latent variable models via knockoffs: an application to international large-scale assessment in education. Journal of the Royal Statistical Society. Series A: Statistics in Society. ISSN 0964-1998

[img] Text (Variable selection in latent variable models via knockoffs) - Published Version
Available under License Creative Commons Attribution.

Download (802kB)

Identification Number: 10.1093/jrsssa/qnad137

Abstract

International large-scale assessments (ILSAs) play an important role in educational research and policy making. They collect valuable data on education quality and performance development across many education systems, giving countries the opportunity to share techniques, organisational structures, and policies that have proven efficient and successful. To gain insights from ILSA data, we identify non-cognitive variables associated with students’ academic performance. This problem has three analytical challenges: (a) academic performance is measured by cognitive items under a matrix sampling design; (b) there are many missing values in the non-cognitive variables; and (c) multiple comparisons due to a large number of non-cognitive variables. We consider an application to the Programme for International Student Assessment, aiming to identify non-cognitive variables associated with students’ performance in science. We formulate it as a variable selection problem under a general latent variable model framework and further propose a knockoff method that conducts variable selection with a controlled error rate for false selections.

Item Type: Article
Official URL: https://academic.oup.com/jrsssa
Additional Information: © 2023 The Author
Divisions: Statistics
Subjects: H Social Sciences > HA Statistics
Date Deposited: 21 Nov 2023 10:39
Last Modified: 17 Oct 2024 18:08
URI: http://eprints.lse.ac.uk/id/eprint/120812

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics