Shi, Chengchun ORCID: 0000-0001-7773-2099, Xu, Tianlin, Bergsma, Wicher ORCID: 0000-0002-2422-2359 and Li, Lexin (2021) Double generative adversarial networks for conditional independence testing. Journal of Machine Learning Research. ISSN 1532-4435
Text (GANCIT-2021-09-15)
- Accepted Version
Available under License Creative Commons Attribution. Download (607kB) |
Abstract
In this article, we study the problem of high-dimensional conditional independence testing, a key building block in statistics and machine learning. We propose an inferential procedure based on double generative adversarial networks (GANs). Specifically, we first introduce a double GANs framework to learn two generators of the conditional distributions. We then integrate the two generators to construct a test statistic, which takes the form of the maximum of generalized covariance measures of multiple transformation functions. We also employ data-splitting and cross-fitting to minimize the conditions on the generators to achieve the desired asymptotic properties, and employ multiplier bootstrap to obtain the corresponding p-value. We show that the constructed test statistic is doubly robust, and the resulting test both controls type-I error and has the power approaching one asymptotically. Also notably, we establish those theoretical guarantees under much weaker and practically more feasible conditions compared to the existing tests, and our proposal gives a concrete example of how to utilize some state-of-the-art deep learning tools, such as GANs, to help address a classical but challenging statistical problem. We demonstrate the efficacy of our test through both simulations and an application to an anti-cancer drug dataset.
Item Type: | Article |
---|---|
Official URL: | https://www.jmlr.org/ |
Additional Information: | © 2021 The Authors |
Divisions: | Statistics |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science H Social Sciences > HA Statistics |
Date Deposited: | 03 Nov 2021 10:30 |
Last Modified: | 17 Oct 2024 16:42 |
URI: | http://eprints.lse.ac.uk/id/eprint/112550 |
Actions (login required)
View Item |