Kohayakawa, Yoshiharu, Rödl, Vojtech, Schacht, Mathias and Skokan, Jozef
(2010)
*On the triangle removal lemma for subgraphs of sparse pseudorandom graphs.*
In: Barany, Imre, Solymosi, József and Sagi, Gabor, (eds.)
An Irregular Mind: Szemerédi Is 70.
Bolyai Society mathematical studies(21).
Springer, New York, USA, pp. 359-404.
ISBN 9783642144431

## Abstract

We study an extension of the triangle removal lemma of Ruzsa and Szemeredi [Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, North-Holland, Amsterdam, 1978, pp. 939-945], which gave rise to a purely combinatorial proof of the fact that sets of integers of positive upper density contain three-term arithmetic progressions, a result first proved by Roth [On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109].

Item Type: | Book Section |
---|---|

Official URL: | http://www.springer.com |

Additional Information: | © 2010 Springer Science+Business Media |

Library of Congress subject classification: | Q Science > QA Mathematics |

Sets: | Departments > Mathematics |

Date Deposited: | 11 May 2011 13:19 |

URL: | http://eprints.lse.ac.uk/36089/ |

### Actions (login required)

Record administration - authorised staff only |