Cookies?
Library Header Image
LSE Research Online LSE Library Services

Estimation in two classes of semiparametric diffusion models

Kristensen, Dennis (2004) Estimation in two classes of semiparametric diffusion models. Financial Markets Group Discussion Papers (500). Financial Markets Group, The London School of Economics and Political Science, London, UK.

[img]
Preview
PDF - Published Version
Download (585kB) | Preview

Abstract

In this paper we propose an estimation method for two classes of semiparametric scalar diffusion models driven by a Brownian motion: In the first class, only the diffusion term is parameterised while the drift is unspecified; in the second, the drift term is specified while the diffusion term is of unknown form. The estimation method is based on the assumption of stationarity of the observed process. This allows us to express the unspecified term as a functional of the parametric part and the stationary density. A MLE-like estimator for the parametric part and a kernel estimator the nonparametric part are defined for a discrete sample with a fixed time distance between the observations. We show that the parametric part of the estimator is √n-consistent, while the nonparametric part has a slower convergence rate. Also, the asymptotic distribution of the estimator derived. We give a brief discussion of the issue of semiparametric efficiency, and present a small simulation study of the finite-sample performance of our estimator.

Item Type: Monograph (Discussion Paper)
Official URL: http://fmg.ac.uk
Additional Information: © 2004 The Author
Divisions: Financial Markets Group
Subjects: H Social Sciences > HG Finance
H Social Sciences > HB Economic Theory
JEL classification: C - Mathematical and Quantitative Methods > C0 - General > C00 - General
Date Deposited: 06 Aug 2009 08:58
Last Modified: 11 Dec 2024 18:38
URI: http://eprints.lse.ac.uk/id/eprint/24739

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics