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Abstract

In this paper we propose an estimation method for two classes of semiparametric scalar diffusion
models driven by a Brownian motion: In the first class, only the diffusion term is parameterised
while the drift is unspecified; in the second, the drift term is specified while the diffusion term is of
unknown form. The estimation method is based on the assumption of stationarity of the observed
process. This allows us to express the unspecified term as a functional of the parametric part
and the stationary density. A MLE-like estimator for the parametric part and a kernel estimator
of the nonparametric part are defined for a discrete sample with a fixed time distance between
the observations. We show that the parametric part of the estimator is

√
n-consistent, while the

nonparametric part has a slower convergence rate. Also, the asymptotic distribution of the estimator
is derived. We give a brief discussion of the issue of semiparametric efficiency, and present a small
simulation study of the finite-sample performance of our estimator.
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1 Introduction

Continuous time stochastic processes are widely used in dynamic models in economics and finance.

In the past three decades since the groundbreaking work by Black and Scholes (1973), Merton (1973)

stochastic processes have gained a major role in finance theory where they are used in the modelling

of the dynamics of economic variables over time, for example interest rates, stock prices, and exchange

rates; an overview of such models can be found in Björk (1998) and Duffie (1996). To a lesser extent

these have also been used to model the dynamics of macroeconomic variables, see e.g. Bergstrom (1990).

Unfortunately, economic theory has very little to say about the precise specification of the processes.

As a consequence, a wide range of parametric models have been suggested in the literature, for example

Black and Scholes (1973), Chan et al. (1992), Cox et al. (1985), Vasicek (1977), but it is not obvious

that these models are able to deliver an adequate description of the observed process. This may lead

to the use of a misspecified model that are not able to capture the true dynamics of the process in

consideration. This again can have serious implications on the conclusions drawn from the model. Non-

and semiparametric methods may help to detect and to some extent solve such problems, since these

methods allow for a high degree of flexibility and should thereby better safeguard one against possible

misspecification.

We will here take a semiparametric approach to the modelling and estimation of scalar stochastic

differential equations (SDE’s) driven by a Brownian motion. Such processes are fully characterised by

their drift and diffusion function, which we wish to model in a flexible manner. Two very general classes

of models will be considered: In the first class, the drift is specified (up to an unknown parameter) while

the diffusion term is left unspecified; in the second class it is the diffusion term that is parameterised

while the drift term is not specified. We define an estimator for the drift and diffusion function for

models in each of the two classes, and derive its asymptotic properties under regularity conditions. We

also construct a simple test for parametric submodels against the semiparametric alternative. The main

restriction we need to impose is that the diffusion processes in the two classes are strongly stationary

since this property is used for identification of the unspecified term. This excludes for example time-

inhomogenous processes, where the drift and diffusion functions are allowed to depend on time, since

these are non-stationary by construction. The two classes are still very rich, and include a majority

of the parametric homogeneous models proposed in the literature since these in most cases allow for

stationary solutions. In particular, for any parameterisation of a stationary diffusion process, each of

the two classes contains a semiparametric model which has this fully parametric model as a submodel.

Only a few studies in the existing literature have considered semiparametric diffusion models. Aït-

Sahalia (1996a) proposes a semiparametric model with a linear parameterisation of the drift, while

leaving the diffusion term unspecified. Conley et al. (1997) on the other hand suggest to use a simple

parametric form for the diffusion term, while either applying a global series expansion or a locally

linear approximation of the drift term. The model of Aït-Sahalia (1996a) belongs to the first class of

models considered here, while the Conley et al. (1997) model is situated in the second one. These

two models are quite general, but one may still want to allow for other, more flexible, specifications

of either the drift or the diffusion term than the two proposed by the aforementioned authors. This is

made possible with the two classes of semiparametric models proposed here, which allows for virtually

2



any reasonable parameterisation of either the drift or diffusion term. In Bandi and Phillips (2000),

least squares estimators for any parameterisation of either the drift or the diffusion term is proposed.

Their results however depend on the time distance between observations shrinking to zero, the so-

called infill assumption, while ours hold for a fixed time distance; see also Florens-Zmirou (1989) and

Genon-Catalot (1990).

The semiparametric models under consideration here can be very useful as an intermediate step in

model building, moving from an initial nonparametric model towards a parsimonious fully parametric

one. There is a large literature on fully nonparametric estimation of the drift and diffusion function.

Most of the proposed estimators are based on kernel methods, making use of the characterisation of the

drift and diffusion function as the instantaneous conditional mean and variance respectively. Assuming

that the time distance between observations shrinks to zero as the number of observations goes to

infinity, standard kernel regression methods can be used to consistently estimate the drift and diffusion

term. This approach is pursued by, for example, Bandi and Phillips (2003), Jiang and Knight (1997),

and Stanton (1997). These estimators are however prone to a discretization bias if the process is in

fact observed at fixed time instants, c.f. Nicolau (2003). Chen et al. (2000a), Darolles and Gouriéroux

(2001) and Gobet et al. (2003) derive nonparametric estimators for univariate diffusion models by the

method of sieves, allowing for a fixed time distance between observations. Their approach is based

on the so-called infinitesimal operator of the diffusion model, which uniquely identifies the model.

They decompose the operator into its eigenfunctions and demonstrate that from these one may recover

the drift and diffusion term. Estimators of the eigenfunctions are then constructed, and thereby also

estimators of the drift and diffusion function.

On particular area where the semiparametric models can be used is in the continuous time-modelling

of the short term interest rate. As theory provides very little guidance about the correct specification,

a very large number of parametric diffusion models have been used to model short-term interest rates;

Rogers (1995) provides an overview. Most of these models appear not to be able to give a very good fit

of the observed interest rates however, and so it is still an open question what the appropriate model

for the short-term interest rate is. In Kristensen (2004), a specific semiparametric diffusion model is

proposed as an alternative to the parametric models. The model is fitted to an interest rate data

set using the estimation method proposed here. It proves to be able to pick up non-linearities in the

drift term that standard parametric models are unable to capture. Using the test statistic provided

here, the most flexible parametric submodel is in fact rejected when tested against the semiparametric

alternative.

Our estimation method is based on the assumption that the sampled diffusion process is stationary

and ergodic, thereby ensuring that an invariant density of the process exists. By using the Kolmogorov

forward equation, the density can be expressed in terms of the drift and diffusion term. Inverting

this expression, one can write the drift (diffusion) term as a functional of the density and the diffusion

(drift) term. This allows us to uniquely identify the drift (diffusion) term given a parameterisation of the

diffusion (drift) together with a nonparametric estimator of the invariant density. This idea originates

from Wong (1964), and was further developed in Hansen and Scheinkman (1995), and Hansen et al.

(1998). Aït-Sahalia (1996a) made use of the same link to estimate his semiparametric diffusion model.

Due to the higher level of generality, our estimator becomes more involved than the one in Aït-Sahalia
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(1996a) though. There, a closed form estimator for the parametric part is derived, not depending on

the nonparametric part. Unfortunately, in the general case it does not appear as if one can separate

the estimation of the parametric part from the nonparametric one when given discrete observations.

Instead, our estimator is obtained in the following three steps: First, we obtain a nonparametric

estimator of the marginal density. Then the parametric part is estimated using the log-transition

density of the diffusion process with the marginal density estimator plugged in as a nuisance parameter.

Finally, the nonparametric part is estimated as a functional of the nonparametric density estimator

and the parametric estimator.

The benefits from using the log-transition density to estimate the parameter are twofold: First, it

is more likely that the parameter is identified since the transition density gives a full description of

the probability structure of the sampled process.1 Second, assuming that the nonparametric part is

known, estimation of the parametric part by the log-transition density yields the efficient MLE. One

would expect the semiparametric estimator to be close to the (infeasible) fully parametric MLE, and

thereby enjoy a high level of efficiency.

Since it is not possible to directly evaluate the transition density, we propose either to use approx-

imate (e.g. Aït-Sahalia, 2002) or simulation-based methods (see e.g. Durham and Gallant, 2002) in

order to implement the estimator. The estimator obtained from these methods will enjoy the same

properties as the actual, but infeasible one, under suitable conditions. The finite sample properties of

the estimator using approximate likelihood is investigated in a small simulation study. Here, we will see

that even for moderate sample sizes, our estimator performs well, and that the approximate method

does a good job.

Under regularity conditions, we derive the asymptotic properties of the estimator, showing that the

parametric part is
√
n-consistent, while the nonparametric part has a slower convergence rate. Also, the

estimator is shown to follow a normal distribution asymptotically. The asymptotics of the estimator are

based on discrete observations with a fixed time distance in between. This is in contrast to the papers

on nonparametric kernel estimation of the drift and diffusion cited above, and is a desirable property

since a continuous time record of observations may not be available in practice. High frequency (so-

called tick-by-tick) data of, e.g., stock prices and exchange rates are now widely available. One could

argue that these present a (nearly) continuous record, but the data often suffers from various market

microstructure effects, see for example Dunis and Zhou (1998). One may therefore be willing to sacrifice

some of the available observations to avoid having to deal with such effects, and only use observations

of lower frequency (e.g. daily) when estimating the diffusion model.

The paper is organised as follows: In Section 2, we set up the framework and give an informal

introduction to the proposed estimation procedure. In Section 3, theoretical results concerning the

nonparametric part of the estimator are given. The asymptotics of the parametric part of the estimator

is derived in Section 4. We discuss the efficiency of the parametric part in Section 5, and propose a

1-step adjustment which should reach the semiparametric efficiency bound. The implementation of the

estimator is discussed in Section 6, and the results of the simulation study is presented in Section 7.

1A related problem is the so-called aliasing-problem where discretely sampled stochastic processes are indistinguishable,

c.f. Phillips (1973). Hansen and Scheinkman (1995, p. 786) show however that the aliasing problem does not exist for

reversible Markov processes.
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We conclude in Section 8. All proofs and lemmas are collected into the appendices.

Throughout the text, g(λ) (x; θ) denotes the λth derivative w.r.t. x of a function g : R × Θ 7→ R
with g(0) ≡ g, while ġ (x; θ) and g̈ (x; θ) denote the first and second derivative w.r.t. θ. At times we

shall however also denote derivatives by ∂ijx,θg (x; θ) ≡ ∂i∂jg (x; θ) /∂ix∂jθ. We shall write kgk∞ =

supx∈I |g (x)| and kgk2 = (
R
I |g (x)|2 dx)1/2 for any function with domain I ⊆ R.

2 Framework

Let {Xt} = {Xt : t ≥ 0} be the stochastic process solving the following homogenous SDE,

dXt = µ (Xt)dt + σ (Xt) dWt, (1)

where {Wt} is a standard Brownian motion. The domain of {Xt} is denoted I = (l, r) where −∞ ≤
l < r ≤∞. We define the scale density s (x) = exp

£
−2
R x
x∗ µ (y) /σ2 (y) dy

¤
, for some x∗ in the interior

of I. Sufficient conditions for strong stationarity are (S1)
R x∗
l s (x) dx = −∞,

R r
x∗ s (x)dx = +∞, and

(S2) 1/M ≡
R r
l

£
s (x)σ2 (x)

¤−1
dx <∞, c.f. Karlin and Taylor (1981, Section 15.6) and Karatzas and

Shreve (1991, Section 5.5). Under these conditions, {Xt} is stationary and ergodic with an invariant
measure π, π (A) =

R
I P (Xt ∈ A|X0 = x) dπ (x) for any Borel-set A, which has a density given by2

π (x) =
M

s (x)σ2 (x)
=

M

σ2 (x)
exp

·
2

Z x

x∗

µ (y)

σ2 (y)
dy

¸
. (2)

In a parametric framework, models for the above diffusion process is normally constructed by

specifying the drift term, µ, and the diffusion term, σ2, up to an unknown parameter vector θ ∈ Θ
where Θ ⊆ Rd is a finite-dimensional parameter space. We see from (2) that one then implicitly also

specifies the stationary density. It is possible to revert (2) in either of the two following ways,

µ (x) =
1

2π (x)

∂

∂x

£
σ2 (x)π (x)

¤
, (3)

σ2 (x) =
2

π (x)

Z x

l
µ (y)π (y)dy. (4)

So an alternative specification scheme would be to specify the marginal density together with either the

drift or the diffusion term, an idea originating from Wong (1964); see also Cobb et al. (1983), Hansen

and Scheinkman (1995), Hansen et al. (1998). This could be done in a fully parametric framework, but

here we only specify either the drift or the diffusion term and then rely on a nonparametric estimator

of π. For example, we may parameterise the diffusion term, and then plug this into (3) together with a

nonparametric estimator of π. We thereby obtain a semiparametric estimator of µ, by which we mean

that it depends both on a parameter, θ, and a function, π. These considerations lead us to suggest the

following two semiparametric classes of diffusion models:

Class 1:
dXt = µ (Xt)dt + σ (Xt; θ)dWt, (5)

with µ (·) unknown and σ2 (·; θ) known up to the parameter θ.

2We here use π to denote both the measure and the density.
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Class 2:
dXt = µ (Xt; θ) dt + σ (Xt)dWt, (6)

with µ (·; θ) known up to the parameter θ and σ2 (·) unknown.

Here and in the following, µ0, σ
2
0 and π0 will denote the true drift, diffusion and invariant density

respectively associated with the data-generating process. To discuss the estimation of the two classes of

models, let us as an example consider a model from Class 1. In this case, we are given a parameterisation

of the diffusion term, σ2 (·; θ), which we plug into the RHS of (3) together with a density π,

µ (x; θ, π) =
1

2π (x)

∂

∂x

£
σ2 (x; θ)π (x)

¤
. (7)

To obtain an estimator of θ we then make use of the transition density p of {Xt}, which is characterised
by P (Xt+∆ ∈ A|Xt = x) =

R
A p (y|x)dy for any Borel-set A. Since {Xt} is completely characterised

by µ and σ, p is a functional of these two, p (y|x) = p (y|x;µ (·) , σ (·)). In the following section, a
precise expression of p as a functional of µ and σ is derived by utilising results of Dacunha-Castelle

and Florens-Zmirou (1986). By plugging in σ (x; θ) and µ (x; θ, π), a semiparametric version of the

transition density, p (y|x; θ, π) = p (y|x;µ (·; θ, π) , σ (·; θ)), now appears. This version of the transition

density will be employed to perform MLE-like estimation of θ given a nonparametric estimator of

π. Let X0,X∆,X2∆..., Xn∆ be n + 1 observations obtained from (5), where ∆ > 0 is the fixed time

distance between observations; without loss of generality, we set ∆ ≡ 1 in the following.3 The following

nonparametric kernel estimator of the rth derivative, π(r)0 (assuming that it exists), is then available,

π̂(r) (x) =
1

nhr+1r

n−1X
i=0

K(r)

µ
x−Xi

hr

¶
, r ≥ 1, (8)

for a kernel K and a bandwidth hr; see Silverman (1986) for an introduction to these concepts. Note

that we use potentially different bandwidths to estimate each derivative. Under regularity conditions,

including hr = hr,n → 0 and nh2r+1r →∞, π̂(r) (x)→P π
(r)
0 (x) as n→∞. We plug π̂ and π̂(1) into (7),

yielding µ̂ (x; θ) = µ (x; θ, π̂), which in turn is plugged into the transition density. We then propose to

estimate θ by

θ̂ = arg max
θ∈Θ

Ln (θ, µ̂ (·; θ)) (9)

where

Ln (θ, µ) =
1

n

nX
i=1

log p (Xi+1|Xi;µ, σ (·; θ)) . (10)

Once θ̂ has been found, the obvious pointwise estimator of σ2 (x) is σ2(x; θ̂) while µ (x) is estimated

by plugging θ̂ and π̂ into (7) yielding µ̂ (x) = µ(x; θ̂, π̂). The above procedure is also applicable for

models from Class 2, only this time we are given a full parameterisation of µ (·) = µ (·; θ), which can be

substituted into (4) together with a nonparametric estimator of π, thereby obtaining a semiparametric

estimator of σ2 (·) = σ2 (·; θ, π).

3To simplify the exposition, equidistant observations over time are assumed; our results can be extended to allow for

varying time distances between observations.
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The dependence of the nonparametric estimators, µ̂ (x) in Class 1 and σ̂2(x) in Class 2, on the

smoothing parameter h (and a trimming parameter introduced later) chosen by the user is an undesir-

able feature, which they share with many other non- and semiparametric estimators. The sensitivity of

the estimators towards h can be high, and one therefore has to be careful when choosing the bandwidth.

Too small values of h can give imprecise estimates, while a too large choice can induce bias. Rules of

thumb are often applied for the bandwidth choice, but data driven methods such as cross-validation

may lead to better performance. In our framework, such methods are not readily available however. A

further discussion of these and related issues can be found in Section 6.

The estimation procedure described above belongs to a general class of semiparametric estimation

problems, where an estimator of a finite-dimensional parameter θ is obtained with the help of a pre-

liminary estimator of an infinite-dimensional nuisance parameter (here, π). General treatments of the

asymptotic properties of such profiled/concentrated semiparametric estimators can be found in e.g.

Andrews (1994), Chen et al. (2003), Newey and McFadden (1994, Section 8). The estimation of the

finite-dimensional parameter is performed by what we may call semiparametric MLE. There is a large

literature on non- and semiparametric MLE,4 but there the infinite-dimensional parameter is estimated

together with the finite-dimensional one, while here we make use of a preliminary estimator of the for-

mer. This makes our asymptotic theory somewhat different from that strand of the literature. Instead

our estimator fits nicely into a general class of semiparametric two-step estimators: In the first step a

function is (nonparametrically) estimated, while in the second step this is used to obtain an estimator

of a finite-dimensional parameter. So in this setting the function estimated in the first step can be

seen as a nuisance parameter. In our case, the function in question is the invariant density. Chen

et al. (2003) and Newey and McFadden (1994, Section 8) give general conditions for consistency and

asymptotic normality for such profiled semiparametric estimators. Unfortunately, the problem at hand

here cannot directly be dealt with in the framework of those two studies since we have to introduce

trimming of our nonparametric estimators. We therefore have to modify their conditions in order to

establish our theoretical results; Ai (1997) and Robinson (1988) contain related applications of trim-

ming in a semiparametric framework. Furthermore, the transition density takes a very complicated

form, and a careful analysis of it as a function of the drift and diffusion function is required in order

to derive the asymptotic properties. In particular, the derivation of the asymptotic distribution of the

parametric part is very cumbersome, and we are unable to give an explicit expression for the resulting

asymptotic variance. We are however able to set up a consistent estimator of it. Finally, Chen et al.

(2003) and Newey and McFadden (1994) only give conditions for i.i.d. data, while our observations

are dependent. In order to handle this additional complication, we have to assume that our process is

not only stationary, but weakly dependent (also known as β-mixing), and restrict the decay rate of the

mixing-coefficients in a suitable manner. This should be seen as a technical assumption however used

to facilitate our analysis rather than a necessary property needed for the results to carry through.

There are certain obstacles with the implementation of the proposed estimator since the transition

density p for general specifications of µ and σ2 cannot be written in an explicit form, thereby not

allowing for direct evaluation. We resolve this problem by relying on either approximate methods (see

e.g. Lo 1988, Aït-Sahalia 2002) or simulation-based methods (see e.g. Durham and Gallant 2002,

4See for example Murhpy and Van der Vaart (2000) and the references therein.
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Elerian et al 2001, Hurn et al 2003, Pedersen 1995). Applying such methods in the implementation of

our estimator will have an asymptotically negligible effect on θ̂ if the order of approximation is allowed

to increase with the sample size at a fast enough rate.

We remark that other criterion functions than log p could be used to estimate θ. In Aït-Sahalia

(1996a) for example OLS is used; it is not clear however if this idea can be adapted to more general

cases or only works for his specific choice of parameterisation. There is a variety of other estimating

procedures in the literature for diffusion models, see e.g. Duffie and Singleton (1993), Hansen and

Scheinkman (1995), Gallant and Long (1997), Gallant and Tauchen (1996), Gouriéroux et al. (1993),

Sørensen (1997), but the log-likelihood approach is the most natural choice, and one would expect that

this would yield a near-optimal estimator.

There is also room for different estimators of π0. Our theoretical results are based on the use of the

above kernel estimator of π0, but can be substituted with alternative estimators such as series or spline

estimators, c.f. Stone (1990), as long as one is able to show uniform consistency with a sufficiently high

convergence rate for this.

Observe that if π0 was known, we would be in a fully parametric framework and θ̂ would be the

maximum-likelihood estimator (MLE), which under regularity conditions would enjoy full efficiency.

But since we have not fully specified our model, the asymptotic variance of θ̂ may not reach the

Cramer-Rao bound. One would however expect that the asymptotic properties of θ̂ are closely related

to the fully parametric MLE. As we shall see, the asymptotic distribution of θ̂ in fact equals that of the

fully parametric MLE plus an additional term entering the variance; this is due to the fact that we use

an estimator of π0 instead of the unknown density itself. This is related to the issue of semiparametric

efficiency, see Newey (1990) and Severini and Tripathi (2001) for overviews. It could be of interest to

derive the efficiency bound for the semiparametric models of this paper, and see whether our estimator

reaches it. This is non-trivial though. Most of the existing literature on semiparametric efficiency

is concerned with i.i.d. data, while we work with a Markov process. Moreover, the analysis of the

transition density as a functional of π is not easy, and will require a lot of additional work. In Section

5, we give a brief discussion of these issues, and propose a 1-step adjustment to our semiparametric

estimator which we conjecture will reach the semiparametric efficiency bound. A rigorous treatment of

the efficiency bound and the 1-step adjustment is left for future research.

As stressed earlier, we here restrict our attention to stationary diffusion processes. The above

identification scheme can however be extended to a wider class of processes satisfying (S1), but not

necessarily (S2). In this case, the invariant density π exists, but is not necessarily integrable, allowing forR
I π (x)dx = +∞. The density will still satisfy (2) (leaving out M), such that the relation given in (3)
remains valid, while for (4) to hold one has to require limx→l π (x)σ2 (x) = 0.5 In the groundbreaking

work by Bandi and Phillips (2003), it is demonstrated that for this extended class of "weakly" non-

stationary (so-called recurrent) processes, µ and σ2 can be consistently estimated by kernel methods

as ∆→ 0; for related results, we refer to Karlsen and Tjøstheim (2001) and Park and Phillips (1998).

However, it is not clear what the asymptotic behaviour of the estimators proposed above will be when

(S2) does not hold; this will be investigated in future research.

Our estimation procedure cannot readily be extended to general multivariate diffusion models, since

5This will automatically be satisfied under (S2).
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the link between the invariant density, the drift and the diffusion term utilised here does not necessarily

hold in higher dimensions. If one is ready to restrict the attention to the class of multivariate models

satisfying this relation,6 the proposed estimation procedure should still work. But it would suffer from

the well-known curse of dimensionality of nonparametric estimators. Moreover, the transition density

in the general multivariate case is even more difficult to analyse than in the univariate one, so the task

of establishing theoretical results for the parametric part of the estimator in a multivariate setting will

be a rather difficult one.

3 The Nonparametric Estimator

In this section, we show that the nonparametric estimators of µ and σ2 proposed in the previous

section will be pointwise consistent and asymptotically normally distributed for any given
√
n-consistent

estimator of θ. So we here assume the existence of such an estimator. In the next section we show

that the estimator of θ proposed in the previous section is indeed
√
n-consistent. We also give uniform

convergence rates and define a simple test statistic allowing one to test any parametric submodel against

the semiparametric alternative.

In Class 1, we simply plug in the initial estimators of the marginal density π and the parameter θ,

yielding

µ̂ (x) =
1

2π̂ (x)

∂

∂x

h
σ2(x; θ̂)π̂ (x)

i
, (11)

where π̂ is the kernel estimator in (8) and θ̂ is the estimator of θ. For Class 2, we observe that by the

Law of Large Numbers (LLN) for stationary and ergodic sequences,

1

n

nX
i=1

1(l,x) (Xi)µ (Xi; θ)→P

Z x

l
π0 (y)µ (y; θ)dy,

for any (x, θ) ∈ R×Θ given the moment exists. We then define7

σ̂2 (x) =
2

π̂ (x)

1

n

nX
i=1

1(−∞,x) (Xi)µ(Xi; θ̂).

As noted earlier, we have to assume that {Xt} is stationary and ergodic in order to be able to
identify the unspecified term. In fact, we require it to be geometrically β-mixing. The results stated in

this section will actually hold under weaker mixing conditions. But since in the next section we need

β-mixing in order to employ U-statistics results for dependent sequences (see Serfling, 1980; Arcones,

1995), we impose this restriction throughout for clarity. Similar conditions have been imposed elsewhere

in the nonparametric literature to control the dependence structure, for example in Aït-Sahalia (1996a)

and Robinson (1989). The following assumption (A0) is sufficient for {Xt} to be well-defined, stationary
and geometrically β-mixing. In particular, (A0) implies (S1)-(S2) given in the previous section.

6This restriction is for example imposed by Chen et al (2000b) in their nonparametric study of multivariate diffusion

models.
7An alternative estimator would be σ̂2 (x) = 2

R x
l
π̂ (y)µ(Xi∆; θ̂)dy/π̂ (x). The advantage of this is that it is continuous

and differentiable. On the other hand,
R x
l
π̂ (y)µ(Xi∆; θ)dy is a biased estimator of

R x
l
π0 (y)µ(Xi∆; θ)dy.
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A0 (i) The drift µ0 (·) and diffusion σ20 (·) > 0 are continuously differentiable, and (ii) there exists a

function V : R 7→ R+ satisfying V (x) ≥ |x|q̄ as x→ l+ and r− with q̄ > 1, and constants b, c > 0

such that

µ0 (x)V 0 (x) +
1

2
σ20 (x)V 00 (x) ≤ −cV (x) + b. (12)

Under (A0), (i), there exists a unique solution to (1), c.f. Karatzas and Shreve (1991, Theorem 5.5.15

and Corollary 5.3.23). The condition given in (12) is a so-called drift criterion, known from the ergodic

theory for Markov chains. The function V is a norm-like function, and under (12), there exists ρ ∈ (0, 1)

such that E [V (X∆) |X0 = x] ≤ ρV (x)+b, ensuring that the process is mean-reverting. This condition

not only implies that the process is β-mixing with exponentially decaying mixing-coefficients, but also

that Eπ

£
|X0|q̄

¤
< ∞, where Eπ [·] denotes the expectations operator w.r.t. the stationary measure of

X. (A0) is based on results by Meyn and Tweedie (1992); alternative conditions for mixing of diffusion

processes can be found in Chen et al. (1999), Hansen and Scheinkman (1995) and Veretennikov (1997);

see also Karatzas and Shreve (1991, Section 5.5). Most parametric model found in the literature can

be shown to satisfy (A0): Continuity and differentiability of µ and σ2 are normally satisfied, and with

V (x) = xq, q > 1, the second condition becomes

qµ (x)x +
q (q − 1)

2
σ2 (x) ≤ −cx2, (13)

as |x|→∞ (assuming I = R). If for example µ (x) = β (α− x), the condition becomes

σ2 (x) ≤ c1x
2 + c2, |x|→∞,

c1 ≡
2 (qβ − c)

q (q − 1)
, c1 ≡

−2qβα

q (q − 1)

with 0 < c < qβ where we require β > 0.

In some cases, one might want to have precise expressions of the convergence rate. This is for

example the case in the next section where the convergence must take place at a sufficiently high rate.

To speed up the convergence, we employ so-called higher order kernels in the estimation of π (ωฏࠏ) 0

N !(ଃ ) g =0) ��|) ��$� ( ଃ )|)g4!;e0 N! )(ଃ ) $�



√
n-consistency of θ, see e.g. Robinson (1988) for an early application of higher order kernels to semi-

parametric estimation. Andrews (1995) gives uniform convergence rates of the density estimator and

its derivatives using this type of kernels under fairly general conditions. We apply his results here even

though the convergence rates stated there are not optimal. Masry (1996) obtains optimal convergence

rates but only considers convergence on compact sets, while we wish to allow for a non-compact domain

I. Similarly, Bosq (1998) establishes uniform consistency with a near optimal convergence rate on the

whole of R for Markov processes, but estimators of the derivatives of the density are not considered.
One could extend their results to hold on the whole of R and for density derivatives, but this is not
the focus of this paper and we shall simply apply the results of Andrews (1995) here. The pointwise

asymptotic distribution of π̂(r) has been established in a number of papers, see e.g. Robinson (1983).

Given the consistency and the asymptotic distribution of π̂(r), the asymptotic properties of the two

nonparametric estimators can now be derived using standard delta-methods.

One might also wish to have uniform convergence of the nonparametric estimators. This is for

example needed in the next section when dealing with the asymptotics of θ̂. We wish to show uniform

consistency of the nonparametric estimators in the supremum-norm. However, since the estimators

and the limits themselves potentially are unbounded functions, this is not readily possible. To cir-

cumvent this problem, we control the tail behaviour of the estimator by trimming, ensuring that the

nonparametric estimator equals zero outside a compact, but growing set. We define

Â = {x|π̂ (x) ≥ a} (14)

for some sequence a = an → 0. We then show uniform convergence on the increasing set Â.

In addition to (A0), we impose the following assumptions:

A1 The true density, π0, is ω times continuously differentiable with bounded derivatives in a neigh-
bourhood of each point xi ∈ I where xi 6= xj , i, j = 1, ..., d.

A2
√
n(θ̂ − θ0) = OP (1).

The condition that π0 is ω times continuously differentiable is satisfied if µ0 and σ20 are ω times

continuously differentiable, c.f. (2). Since the rate of convergence of π̂ and its derivatives is slower than
√
n, the asymptotic distribution of θ̂ will not have any effect on the ones of µ̂ and σ̂2. In particular,

the efficiency of θ̂ is not important in this context. Condition (A2) can be weakened to allow for slower

convergence rate of θ̂, as long as it is faster than
√
nh3 (

√
nh) when estimating µ0 (σ

2
0). If this is not

the case, the asymptotic distribution of θ̂ will influence the one of the nonparametric estimator.

In the following let {xi|1 ≤ i ≤ N} be N distinct points in I, xi 6= xj for i 6= j.

Theorem 1 (Class 1) Assume that K ∈ K (ω, 1), and (A0)-(A2) hold with ω ≥ 3; θ 7→ σ2 (x; θ)

is continuously differentiable satisfying ||∂ijx,θσ2 (x; θ) || ≤ C
¡
1 + |x|q̄

¢
, i, j = 0, 1; and hi → 0, and

nh2i+1i → ∞, i = 0, 1. Then the nonparametric estimator of the drift is pointwise consistent and

asymptotically normally distributed,q
nh31 [µ̂ (x1)− µ0 (x1) , ..., µ̂ (xd)− µ



where Vµ = diag({Vµ (xi)}Ni=1) is a diagonal matrix and Vµ (x) = 1
4 ||K(1)||22σ40 (x) /π0 (x). Moreover,

sup
x∈Â

|µ̂ (x)− µ0 (x)| =
1X

i=0

n
OP (n−1/2ai−3h−1−ii ) + OP (ai−3hω−ii )

o
.

Theorem 2 (Class 2) Assume that K ∈ K (ω, 0), and (A0)-(A2) hold with ω ≥ 2; θ 7→ µ (x; θ) is

continuously differentiable, satisfying ||∂iθµ (x; θ) || ≤ C
³

1 + |x|q̄/2
´
, i = 0, 1; h0 → 0 and nh0 → ∞.

Then the nonparametric estimator of the diffusion term is pointwise consistent and asymptotically

normally distributed, p
nh0

£
σ̂2 (x1)− σ20 (x1) , ..., σ̂

2 (xd)− σ20 (xd)
¤ d→ N (0, Vσ) ,

where Vσ = diag({Vσ (xi)}Ni=1) is a diagonal matrix with Vσ (x) = ||K||22σ40 (x) /π0 (x). Moreover,

sup
x∈Â

¯̄
σ̂2 (x)− σ20 (x)

¯̄
= OP (n−1/2a−2h−10 ) + OP

¡
a−2hω0

¢
.

Pointwise estimators of the asymptotic variance for µ̂ (x) and σ̂2 (x) respectively can be constructed

as

V̂µ (x) =
[
R
K 0 (y)2 dy]σ4(x; θ̂)

4π̂ (x)
, V̂σ (x) =

[
R
K (y)2 dy]σ̂4 (x)

π̂ (x)
. (15)

We only state results for the estimation of µ and σ2 but one is able to derive similar results for the

estimators of the derivatives of µ and σ2. Observe that both nonparametric estimators are asymptot-

ically independent across the points {xi}Ni=1. This is a well-known property of kernel-estimators, c.f.
Robinson (1983), which facilitates global inference, for example when constructing pointwise confidence

bands, and testing hypotheses (see below).

The pointwise rate of convergence of µ̂might at first appear surprisingly slow given the interpretation

of µ as the (instantaneous) conditional mean. In a standard nonparametric regression model, one is able

to estimate the conditional mean with rate
√
nh, but observe that in our case µ is not only a functional

of π but also of its derivative π(1) with the nonparametric estimator π̂(1) having slower convergence

rate than π̂,
√
nh3 relative to

√
nh. In contrast, we obtain the standard rate of convergence as found

in kernel regressions for σ̂2. This owes to the fact that σ̂2 is only a function of π̂ and not any of its

derivatives. Thus, the drift is more difficult to estimate than the diffusion term in a nonparametric

setting. This observation has been made elsewhere in the literature. Gobet et al. (2003) report similar

results for their sieve-estimator, and coin the nonparametric estimation of µ given discrete observations

as an ”ill-posed problem”. Similarly, Bandi and Phillips (2003) demonstrate that for a stationary

diffusion, it is only possible to estimate µ (x) nonparametrically with
√
n∆h-rate, while σ2 (x) can be

estimated at the faster rate
√
nh as ∆→ 0 and n∆→∞.

The first part of the result stated in Theorem 2 has already been obtained by Aït-Sahalia (1996a)

for the special case µ (x; θ) = β (α− x). So we here extend his result to hold for a more general class

of semiparametric diffusion models.

Next, we set up a simple test for a parametric diffusion submodel against our semiparametric

alternative. We start out with Class 1, for which we consider a parametric specification of the drift,

µ (·;β) for β ∈ B ⊆ Rd. We then wish to test the following nested hypothesis

H10 : µ0 (·) = µ (·;β0) for some β0 ∈ B

12



against the nonparametric alternative,

H11 : µ0 (·) 6= µ (·;β) for all β ∈ B,

Under the null the model is fully specified and the parameters (θ, β) can be estimated using standard

methods, with the obvious one being MLE. Under regularity conditions, this will yield
√
n-consistent

estimators of (θ, β). We base the our test statistic on the pointwise difference between the nonparametric

and parametric estimate. For similar test procedures for conditional means, see Gozalo (1995, 1997)

and Härdle and Mammen (1993). Under H10, µ(x; β̂) − µ0 (x) = OP

¡
n−1/2

¢
, when a

√
n-consistent

estimator β̂ is available8, and smoothness conditions are imposed on β 7→ µ (x;β), such that

√
nh3

µ̂ (x)− µ(x; β̂)

V̂
1/2
µ (x)

=
V̂
1/2
µ (x)

V
1/2
µ (x)

√
nh3

µ̂ (x)− µ0 (x)

V
1/2
µ (x)

+ oP (1)
d莑堀P⬀x� ˆ� V (x



it can be shown that the number of points N used in the test statistic for e.g. µ can grow with n as

long as it does so at a rate slower than
√
nh3.

Instead of relying on the asymptotic distribution as an approximation of the finite-sample properties

of Tn, it may be worthwhile to use bootstrapping since nonparametric goodness-of-fit tests appear to

exhibit significant differences between nominal and true size in finite samples, see e.g. Fan (1994, 1995).

It should be possible to show consistency of the bootstrap in our case by following her arguments.9

4 The Semiparametric Estimator

In this section we construct an estimator for θ and derive its asymptotic properties in each of the two

classes of models. This is done along the lines proposed in Section 2, using the log-transition density

to define our criterion function. For each class, we show that θ̂ is consistent, and converges weakly

towards a normal distribution with
√
n-rate.

The results stated in this section are established under the assumption that the domain I = R.
We conjecture that our results also hold for other domains by using arguments similar to those in

Aït-Sahalia (2002). Allowing for such will however further complicate the proofs, since we need to give

specific treatment to the boundary behaviour of {Xt}; in particular, the transition density will depend
on the specified domain.

Drawing upon results of Dacunha-Castelle and Florens-Zmirou (1986), we are able to obtain an

expression for log p (c.f. Lemma 38) as a functional of µ and σ2. This characterisation was also utilised

by Aït-Sahalia (2002) in his derivation of an approximation of the likelihood-function. The log-density

takes the following form,

log p
¡
x
¯̄
x0;µ, σ

2
¢
∝ −1

4
log
£
σ2 (x)σ2 (x0)

¤
−
µZ x

x0

σ−1 (w)dw

¶2
/2 + log (EB [ψ (x|x0)]) , (16)

where

ψ (x |x0 ) = exp

·
∆

Z 1

0
λY (Zt (x|x0)) dt

¸
, (17)

Zt (x|x0) = γ−1 (tγ (x) + (1− t)γ (x0) + Bt) , (18)

λY (z) = −1

2

£
µ2Y (z) + ∂xµY (z)σ (z)

¤
, (19)

µY (z) =
µ (z)

σ (z)
− 1

4

∂xσ
2 (z)

σ (z)
, (20)

γ (z) =

Z
σ (z)−1 dz. (21)

and {Bt|0 ≤ t ≤ 1} is a standard Brownian Bridge with associated expectations operator EB [·].10 As
can be seen, the function ψ depends on

¡
µ, σ2

¢
in a fairly complicated way, so the analysis of log p as a

functional of these is not straight forward. The analysis is further complicated by the presence of the

Brownian Bridge in the expression of ψ.
9Fan (1994, 1995) only consider the i.i.d. bootstrap; in our setting a different bootstrap method have to be used, for

example Horowitz (2003).
10See Karatzas and Shreve (1991, p. 358-360) for a definition of the Brownian Bridge.
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4.1 Class 1

In this subsection, we derive the asymptotic properties of θ̂ in Class 1. We propose the following

estimator

θ̂ = arg max
θ∈Θ

Ln (θ, µ̂ (·; θ)) , (22)

where

Ln (θ, µ) =
1

n

nX
i=1

log p (Xi+1|Xi; θ, µ) , (23)

and p (x|x0; θ, µ) = p
¡
x|x0;µ, σ2 (·; θ)

¢
with p

¡
x|x0;µ, σ2

¢
given in (16). We observe that ψ only

depends on µ and µ(1), so when showing consistency of θ̂, we only need to show ||µ̂(i) − µ̂
(i)
0 ||∞ →P 0,

i = 0, 1. However, due to θ appearing in Zt (x|x0; θ), ∂θ log p depends on µ(i), i = 0, 1, 2, and ∂2θ log p

on µ(i), i = 0, 1, 2, 3. So in order to derive the asymptotic distribution of θ̂, we have to ensure that

||µ̂(i) − µ̂
(i)
0 ||∞ →P 0, i = 0, 1, 2, 3, and that convergence takes place with rate n1/4.

We are now ready to set up the conditions, which we will work under.

C1.1 (A0)-(A1) holds with ω ≥ 6, the kernel K ∈ K (ω, 4), and the trimming function T̂ ∈ T (4).

C1.2 The diffusion function x 7→ σ (x; θ) is six times continuously differentiable for any θ ∈ Θ;
θ 7→ σ2 (x; θ) is three times continuously differentiable for any x ∈ I; σ2 ≤ σ2 (x; θ), and

||∂ijx,θσ2 (x; θ) || ≤ σ̄2, 0 ≤ i ≤ 4 and 0 ≤ j ≤ 2.

C1.3 (i) The drift function satisfies ||∂ix∂jθµ0 (x; θ) || ≤ C (1 + |x|q), 0 ≤ i ≤ 6 and 0 ≤ j ≤ 2, with

4q + 2 + δ ≤ q̄ for some δ > 0 where q̄ given in (A0); (ii) −C
¡
1 + |z|q̄

¢
≤ λY (z; θ, µ0 (·; θ)) ≤ λ̄Y

uniformly in (x, θ).

C1.4 The parameter space Θ ⊆ Rd is compact.

C1.5 The moment L (θ, µ0 (·; θ)) = Eπ [log p (X1|X0; θ, µ0 (·; θ))] has a unique maximum at θ0 ∈ Θ,
such that

H (θ0, µ0) ≡ −Eπ

·
∂2

∂θ2
log p (X1|X0; θ0, µ0 (·; θ0))

¸
(24)

is positive definite.

C1.6a (i) na2(i−4)h2(1+i)i →∞, (ii) ai−4hω−ii → 0 ,λ = 0, 1, 2, as a, hi → 0, for i = 0, 1, 2.

C1.6b (i) na4(i−4)h4(1+i)i →∞ (ii) na4(i−4)h4(ω−i)i → 0, (iii) na4(4−i)h1+ii → 0, and (iv) a−2h2(ω−i)i → 0,

for 0 ≤ i ≤ 3; (v) na−4h104 → ∞, and (vi) a−2hω−44 → 0; (vii) nPπ×B (a/2 ≤ π0 (Zt) ≤ a) → 0;

(viii) nPπ (a/2 ≤ π0 (X0) ≤ a)→ 0.

C1.7 The density p̄ (z) given by

p̄ (z) =
1√

∆σ0 (z)

R
R2
p (x|x0)π0 (x0)

½
1R
0

pB
¡
t, Z−1 (t, x, x0, z)

¢
dt

¾
dxdx0. (25)

where

pB (t, b) = φ

Ã
bp

t (1− t)

!
=

1p
2πt (1− t)

exp

· −b2
2t (1− t)

¸
.
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and

Z−1 (t, x, x0, z) =
γ0 (z)− tγ0 (x)− (1− t)γ0 (x0)√

∆
.

satisfies p̄(i) = O(π
(i)
0 ), 0 ≤ i ≤ 4.

The smoothness criteria on π0 in (C1.1) are used to ensure that the transition density is well-defined,

and to decrease the bias from the kernel estimation. As discussed earlier, a high degree of smoothness

together with the use of higher-order kernels will reduce the bias of the kernel estimator, c.f. Lemma

39.

The smoothness assumptions on σ2 (x; θ) in (C1.2) is needed for the first and second derivative of

log p w.r.t. θ to be well-defined. The boundedness conditions on σ2 (x; θ) and its derivatives are very

restrictive. These bounds are primarily used to establish suitable bounds for the various terms entering

log p, in particular EB [ψ (x, x0; θ, µ)]. We conjecture that it should be possible to obtain these under

weaker assumptions on σ2, but this will complicate the proofs further. In practice the boundedness

assumption should not be a problem, since one can always choose a parameterisation such that σ2 (x; θ)

is constant outside a compact set, which can be chosen arbitrarily large.

The conditions (C1.1)-(C1.3) guarantee that the transition density exists (c.f. Aït-Sahalia (2002),

Proposition 2). There is some tension between (A0) and (C1.3), which both impose growth conditions

on the drift function. In a fully parametric framework, (C1.4)-(C1.5) are standard assumptions when

deriving the asymptotic properties of the MLE. In fact, if π0 was known, the MLE of θ is consistent

and asymptotically normally distributed under (C1.1)-(C1.5), c.f. Aït-Sahalia (2002, Proposition 3 and

Theorem 2).

Condition (C1.6a) and (C1.6b) restrict the choice of bandwidths and the trimming sequences to

ensure that (a) ||µ̂(i) (·; θ) − µ̂
(i)
0 (·; θ) ||∞ →P 0 and (b) Eπ[|µ̂(i)0 (X0; θ) − µ

(i)
0 (X0; θ) |] → 0, together

with derivatives w.r.t. θ, at a sufficiently fast rate. To prove consistency, we merely have to show

that the convergence takes place, while
√
n-asymptotic normality requires that the convergence takes

place with rate n1/4. The first convergence creates a tension between a and h as they go to zero. Two

bias and variance terms have to be controlled for: The one incurred from using π̂ instead of π0 in the

estimation, which goes to zero as h→ 0, the other is caused by the trimming since the trimmed version

of the score function may not equal zero for a > 0. One then has to balance the two effects to obtain

consistency and asymptotic normality. For (b) to hold one needs that a → 0, while for it to happen

with rate n1/4 we need to impose (C1.6b), (vii). The condition (C1.6b) is more restrictive than (C1.6a).

When showing
√
n-asymptotic normality, further restrictions on the set of permissible bandwidth and

trimming sequences are required since we now have to ensure that the two biases in (a) and (b) go

to zero with a faster rate. The trimming bias can normally be avoided by introducing the trimming

in such a way that the conditional expectations of ∂θ log p equals zero for any a as done in Ai (1997)

and Robinson (1988). This does not appear to feasible here though since µ enters p in a complicated

manner.

The measure Pπ×B appearing in (C1.6b) is the product of the probability measures associated with

the Brownian Bridge and {Xi} respectively. Primitive conditions for (C1.6b), (viii), can be derived
under the assumption that π0 (x) is monotonously decreasing (increasing) for x > R (x < −R) for some
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R > 0. Then, for a sufficiently small,

Pπ (π0 (X0) ≤ a) =

Z
{z|π0(z)≤a}

π0 (z) dz

=

Z a

0

π0
¡
π−10 (z)

¢
π
(1)
0

¡
π−10 (z)

¢dz − Z a

0

π0
¡
π̄−10 (z)

¢
π
(1)
0

¡
π̄−10 (z)

¢dz
=

Z a

0

z

π
(1)
0

¡
π−10 (z)

¢dz − Z a

0

z

π
(1)
0

¡
π̄−10 (z)

¢dz,
where π−10 (π̄−10 ) is the inverse of π0 for x < −R (x > R). Assume that µ0 (z) ∝ ±zp as z → ∓∞,
for some p > 0. Since σ (x; θ0) is assumed to be bounded, π0 (z) ∝ exp

h
− |z|p+1

i
. Thus, π(1)0 (z) ∝

− |z|p exp
h
− |z|p+1

i
, and π−10 (y) = − (− log (y))1/(p+1) and π̄−10 (y) = (− log (y))1/(p+1), yielding

Pπ (π0 (X0) ≤ a) ' 2

Z a

0
zp+1 exp [− log (z)] dz = 2

Z a

0
zpdz =

2

p + 1
ap+1.

So the tail-thickness of π0 determines the rate with which a is allowed to go to zero.

The density p̄ in (25) introduced in (C1.7) is implicitly given byZ
f (z) p̄ (z)dz =

Z 1

0
Eπ×B [f (Zt (X1|X0))] dt.

The restriction imposed on p̄ is used to ensure that the asymptotic variance of θ̂ is finite. It appears

difficult to come up with primitive conditions for this to hold since p̄ takes a very complex form.

In order to show consistency of the parametric part of our estimator, we basically have to demon-

strate that the log-likelihood function is continuous w.r.t. µ in probability and that µ̂ →P µ0 in a

normed function space. Once this is established, standard consistency results for parametric estimators

can be applied to Ln (θ, µ0 (·; θ)), see e.g. Newey and McFadden (1994, Theorem 2.1) and Chen et al.



corresponding sample version,

∇Sn (θ0, µ̂0) [dµ] =
1

n

nX
i=1

∇s (Xi|Xi−1; θ0, µ̂0) [dµ] .

and its moment, ∇S (θ0, µ̂0) [dµ] = Eπ [∇s (Xi|Xi−1; θ0, µ̂0) [dµ]]. By Lemma 17, the pathwise deriva-

tive is well-defined, and satisfies

Sn (θ0, µ̂)− Sn (θ0, µ̂0)−∇Sn (θ0, µ̂0) [µ̂− µ̂0] = oP (n−1/2).

It can be shown that∇Sn (θ0, µ̂0) [µ̂− µ̂0] = ∇S (θ0, µ0) [µ̂− µ̂0]+oP (n−1/2) using standard U-statistics
results for weakly dependent sequences (c.f. Lemma 19 and 20). Finally, ∇S (θ0, µ0) [µ̂− µ̂0] can be

written as a normed sum plus a remainder term with the latter being asymptotically negligible,

∇S (θ0, µ0) [µ̂− µ̂0] =
1

n

nX
i=1

δ (Xi−1) + oP (n−1/2), (26)

where Eπ [δ (X0)] = 0 and Eπ

h
kδ (X0)k2

i
<∞ (c.f. Lemma 21). These results combined with the fact

that Hn(θ̂, µ̂) converges towards H (θ0, µ0) (c.f. Lemma 22) proves the following result:

Theorem 6 (Class 1) Assume that (C1.1)-(C1.7) hold, and that θ0 ∈ int (Θ). Then

√
n(θ̂ − θ0)

d→ N
¡
0, H−1

0 (H0 + V0)H
−1
0

¢
,

where H0 = H (θ0, µ0), and V0 = Ω0 + 2
∞P
i=1
Ωi with Ωi = Eπ

h
δ (X0) δ (Xi)

>
i
.

The extra term, V0, in the variance expression is an adjustment term due to the use of π̂ instead

of π0 in the estimation. If π0 was known, V0 ≡ 0, and the asymptotic variance expression would

collapse to the standard inverse information matrix, H−1
0 . Instead, we here experience an increase in

the asymptotic variance. The derivation of (26) is based on the Riesz Representation Theorem, and

we therefore are not able to supply a closed form expression for δ. We are however able to show that

it has mean zero and finite variance. Furthermore, it is possible to derive a consistent estimator of

it, following the same strategy as in Newey (1994a). This estimator can in turn be used to obtain an

estimator of the asymptotic variance by using the so-called HAC variance estimators, see e.g. Robinson

and Velasco (1997). Here, we present an estimator based on the idea of Newey and West (1987).

Theorem 7 (Class 1) Assume that (C1.1)-(C1.7) hold and Eπ[kδ (X0)k4+δ] < ∞. Then consistent
estimators of H0 and V0 respectively are given by Ĥn = Hn(θ̂, µ̂) and

V̂n = Ω̂0 +
MP
i=1

wM,i(Ω̂i + Ω̂>
i ),

where wM,i = 1− [i/ (M + 1)], Ω̂i = n−1
Pn

j=i ω̂jω̂
>
j−i, ω̂j = δ̂j − n−1

Pn−1
k=0 δ̂k,

δ̂j =
1

n

nX
k=1

∂s(Xk|Xk−1; θ̂, µ(·; θ̂, π̂ + αKh (·−Xj)))

∂α

¯̄̄̄
¯
α=0

,

and M →∞, M/n1/8 → 0.
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Observe that in the parametric framework of Newey and West (1987), it is required thatMn/n
1/4 →

0. We have to require that Mn → ∞ at a slower rate due to the presence of the nonparametric

part here, only exhibiting n1/4-convergence rate. One advantage of the above variance estimator is

its simple implementation; one can evaluate the variance estimator by numerical differentiation of

log p (x|x0; θ, µ (·; θ, π + αKh (·− y))) w.r.t. θ and α, instead of deriving the analytical derivatives (on

the other hand, these may lead to superior numerical estimates). Since Eπ [δ (X0)] = 0, one could

leave out the average appearing in the expression for ω̂j, but in finite sample this adjustment may

improve on the performance of the estimator. An alternative to the variance estimator suggested here

would be to construct one by either bootstrapping or subsampling, which should improve on the finite

sample approximation; Hall (1992) and Politis, Romano and Wolf (1999) respectively provide in-depth

treatment of these two methods. The recent work by Horowitz (2003), where a bootstrap method for

Markov chains is suggested based on a kernel estimator of the transition density, is very well-suited for

our framework. Since the sampled observations of the process {Xt} indeed is a Markov chain, and we
have here obtained a semiparametric estimator of the transition density, one should be able to adapt the

results of Horowitz (2003) to our setting. Chen et al. (2003, Theorem B) give conditions for consistency

of the bootstrap for a general class of semiparametric estimators. This is done under the assumption

of i.i.d. observations, but combining their approach with Horowitz’s results should yield the desired

result for our estimator. The verification of this claim is out of the scope of this paper however.

Having obtained the estimator θ̂ in either of the two classes, one could now be interested in testing

hypotheses concerning the parametric part, e.g. H0 : θ = θ0 for some given θ0 ∈ intΘ. An obvious

choice of test statistic for this hypothesis would appear to be the likelihood ratio,

Tn ≡ n
h
Ln(θ̂, µ̂(·; θ̂))− Ln (θ0, µ̂ (·; θ0))

i
,

A general treatment of the semiparametric likelihood ratio test can be found in Murphy and Van der

Vaart (1997) who show that under regularity conditions the likelihood-ratio converges towards a χ2 (p)-

distribution, where p is the dimension of θ. This is however not valid in our case. This owes to the

fact here a preliminary estimator of the nonparametric part is used, while in Murphy and Van der

Vaart (1997) the nonparametric part is estimated together with θ. This has strong implications for the

asymptotic distribution of Tn. Instead one may use that n
³
θ̂ − θ0

´
H−1
0 (H0 + V0)H

−1
0

³
θ̂ − θ0

´
→d

χ2 (p), or apply a GMM-type test statistic based on the score function, Sn (θ, µ).

Given the
√
n-consistency of θ̂ as established above, Theorem 1 now establishes consistency and

asymptotic normality of the nonparametric estimator of the drift, µ̂ (x) = µ̂(x; θ̂). Note that the

bandwidths used to estimate µ̂ should not be chosen to satisfy (C1.6). The bandwidth restrictions

there were tailored to ensure a sufficiently fast convergence rate of both µ̂ and its first two derivatives

while taking into account the trimming; this is not needed to prove pointwise asymptotic normality of

µ̂.

4.2 Class 2

Here, we derive theoretical results for the estimator of θ for models in Class 2. Since our conditions,

strategy of proof and results are very much the same as for Class 1, we will not give any thorough

discussions of these, and instead refer to the previous section.
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As in the previous section, we need to trim our estimator of σ20 (x; θ) to control for the tailbehaviour.

Define

σ̂2 (x) = T̂ (x; a)
2

π̂ (x)

1

n

nX
i=1

1(−∞,x) (Xi)µ (Xi; θ) + (1− T̂ (x;a))σ2,

with T̂ defined earlier. Observe that we here make sure that σ̂2 (x) ≥ σ2 for some lower bound σ2 > 0;

this is needed since σ2 (x) enters as a denominator in p. We furthermore define

σ̂20 (x; θ) = T̂ (y;a)σ20 (x; θ) + (1− T̂ (x;a))σ2, σ20 (x; θ) =
2

π0 (x)

Z x

l
π0 (y)µ(y; θ)dy.

We are now able to establish
°°σ̂2 (·; θ)− σ̂20 (·; θ)

°°
∞ →

P 0. To estimate ∂xσ2, we define

∂xσ̂
2 (x; θ) ≡ T̂ (x; a)

(
2µ (x; θ)− π̂(1) (x)

π̂2 (x)

1

n

nX
i=1

1(−∞,x) (Xi)µ (Xi; θ)

)
,

and similarly for other derivatives w.r.t. x and θ.

We write p
¡
x|x0; θ, σ2

¢
= p

¡
x|x0;µ (·; θ) , σ2

¢
with p

¡
x|x0;µ, σ2

¢
as given in (16), and define our

estimator as

θ̂ = arg max
θ∈Θ

Ln

¡
θ, σ̂2 (·; θ)

¢
,

Ln

¡
θ, σ2

¢
=

1

n

nX
i=1

log p
¡
Xi+1|Xi; θ, σ

2
¢
,

For the kernel estimator, we again use a higher order kernel of order ω ≥ 5. The following assumptions

are imposed:

C2.1 (A0)-(A1) holds with ω ≥ 6, the kernel K ∈ K (ω, 4), and the trimming function T̂ ∈ T (4).

C2.2 (i) σ2 ≤ σ20 (x; θ), and (ii) ||∂ix∂jθσ20 (x; θ) || ≤ σ̄2, 0 ≤ i ≤ 6 and 0 ≤ j ≤ 2.

C2.3 (i) The drift function satisfies ||∂ix∂jθµ0 (x; θ) || ≤ C (1 + |x|q), 0 ≤ i ≤ 6 and 0 ≤ j ≤ 2, with

4q + 2 + δ ≤ q̄ for some δ > 0 where q̄ given in (A0); (ii) −C
¡
1 + |z|q̄

¢
≤ λY (z; θ, µ0 (·; θ)) ≤ λ̄Y

uniformly in (x, θ).

C2.4 The parameter space Θ ⊆ Rd is compact.

C2.5 L (θ, σ0 (·; θ)) = Eπ [log p (X1,X0; θ, σ0 (·; θ))] has a unique maximum at θ0, and

H
¡
θ0, σ

2
0

¢
≡ Eπ

·
∂2

∂θ∂θ0 log p
¡
X1|X0; θ0, σ20 (·; θ0)

¢¸
(27)

is non-singular.

C2.6a (i) na2(i−5)h2(1+i)i →∞, (ii) ai−5hω−ii → 0 as a and hi → 0, i = 0, 1, 2.

C2.6b (i) na4(i−5)h4(1+i)i → ∞ (ii) na4(i−5)h4(ω−i)i → 0, (iii) na4(5−i)h1+ii → ∞, (iv) a−1hω−ii → 0,

0 ≤ i ≤ 3; (v) na−6h104 →∞, (vi) a−3hω−44 → 0;

(vii) nPπ×B (a/2 ≤ π0 (Zt) ≤ a)→ 0; (viii) nPπ (a/2 ≤ π0 (X0) ≤ a)→ 0.
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C2.7 The density p̄ (z) given in (25) satisfies p̄(i) = O(π
(i)
0 ), 0 ≤ i ≤ 4.

The conditions are essentially the same as the ones imposed on the models in Class 1. Note that we

here assume that the σ20 (x; θ) is bounded from below by σ2 which is known. The assumption that σ2 is

known is used to simplify our proofs. One could allow for an unknown bound by introducing another

trimming parameter σ2n → 0. The proofs of consistency and asymptotic normality now proceed as for

Class 1. First, the estimator is shown to be consistent:

Theorem 8 (Class 2) Under (C2.1)-(C2.6a), θ̂→P θ0.

We introduce the score s
¡
x|x0; θ, σ2

¢
= ∂θ log p

¡
x|x0; θ, σ2 (·; θ)

¢
, and the pathwise derivative of

the score s
¡
x|x0; θ, σ2

¢
w.r.t. σ2 in the direction dσ2, ∇s

¡
x|x0; θ, σ2

¢ £
dσ2

¤
which will be used in the

derivation of the asymptotic distribution. Using the same notation as in the previous section, we have

that ∇Sn
¡
θ0, σ̂

2
¢ £
σ̂2 − σ̂20

¤
= ∇S

¡
θ0, σ

2
0

¢ £
σ̂2 − σ̂20

¤
+oP

¡
n−1/2

¢
, c.f. Lemma 33 and 34. Furthermore,

∇S
¡
θ0, σ

2
0

¢ £
σ̂2 − σ̂20

¤
can be written as a sum and a remainder term with the latter being asymptotically

negligible (Lemma 35),

∇S
¡
θ0, σ

2
0

¢ £
σ̂2 − σ̂20

¤
=

1

n

nX
i=1

δ (Xi) + oP
¡
1/
√
n
¢
.

It should be noted, that the function δ here is not identical to the δ-function appearing in Class 1.

Finally, the Hessian h
¡
x|x0; θ, σ2

¢
= ∂2θθ log p

¡
x|x0; θ, σ2 (·; θ)

¢
satisfies Hn(θ̂, σ̂2) →P H

¡
θ0, σ

2
0

¢
, c.f.

Lemma 36. We are able to conclude:

Theorem 9 (Class 2) Assume that (C2.1)-(C2.7) hold and that θ0 ∈ int (Θ). Then the conclusions

of Theorem 6 hold for Class 2 with H0 = H
¡
θ0, σ

2
0

¢
.

We also obtain a consistent estimator of the asymptotic variance:

Theorem 10 (Class 2) Assume that (C2.1)-(C2.7) hold and Eπ[kδ (X0)k4+δ] <∞. Then consistent
estimators of H0 and V0 respectively are given by Ĥn = Hn(θ̂, σ̂2) and V̂n given as in Theorem 7 with

δ̂j =
1

n

nX
k=1

∂s(Xk|Xk−1; θ̂, σ2(·; θ̂, π̂ + αKh (·−Xj)))

∂α

¯̄̄̄
¯
α=0

,

and M →∞, M/n1/8 → 0.

Having obtained
√
n-consistency of θ̂, Theorem 2 establishes pointwise consistency and asymptotic

normality of the nonparametric estimator of σ20 (x).

5 Semiparametric Efficiency

As observed in the previous section, our semiparametric estimator is not adaptive in the general case

since V0 > 0. A natural question to ask is whether it at least reaches the semiparametric efficiency

bound. We are unfortunately not able to give a rigorous answer to this, but due to the nature of our
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estimator we conjecture this is not the case. We furthermore propose a one-step adjustment to our

estimator θ̂ which we conjecture will reach the bound in any circumstance.

For a semiparametric model, Stein (1956) defined the semiparametric efficiency bound as the "least

favourable" parametric subproblem of the original semiparametric problem. The Fisher information of

the semiparametric problem is obviously no greater than the information of any parametric subproblem.

The semiparametric efficiency bound is then defined as the lower bound of the information of all

parametric subproblems.

In our setting, the nonparametric part is π, so we therefore consider any smooth parameterisation

of π for which the associated Fisher information may be derived. In the following assume for simplicity

that θ is one-dimensional, and consider a smooth parameterisation of π, θ 7→ πθ, with πθ0 = π0. The

Fisher information of this subproblem is then given by

I (π̇) = Eπ

h
s0 (X1|X0) [π̇]2

i
where s0 [π̇] = s (θ0, π0) [π̇], s (θ, π) [π̇] = ∂θ log p (y|x; θ, π0) + ∇π log p (y|x; θ, π0) [π̇], with ∇π log p

denoting the pathwise derivative of the log-density w.r.t. π at (θ, π), and π̇ = ∂θπθ|θ=θ0 is the tangent
vector of the curve θ 7→ πθ at θ0. The space of tangent vectors/nuisance scores is given by S =©
π̇ ∈ L2 (I) |

R
I π̇ (z)dz = 0

ª
, and we denote the closure of S by S̄. A tangent vector π̇∗ ∈ S̄ is then

called the least favourable direction if

I (π̇∗) = inf
π̇∈S̄

I (π̇) ,

and I−1 (π̇∗) is the semiparametric efficiency bound. The associated score function s∗0 = s0 [π̇∗] is called
the efficient score function, and any parameterisation θ 7→ πθ which satisfies ∂θπθ|θ=θ0 = π̇∗ is called
a least favourable model. Observe that ∇π log p0 [π̇∗] is the projection of −∂θ log p0 onto the space©
∇π log p0 [π̇] |π̇ ∈ S̄

ª
. This characterisation was utilised in Severini and Tripathi (1999) to calculate

the efficiency bound in a number of semiparametric problems.

But it appears problematic to find π̇∗ in our case, since s [π̇] takes a form which is very difficult to

analyse. And even if we were able to find π̇∗, I−1 (π̇∗) would be difficult to compare to the variance of
θ̂ derived in the previous section since we have no closed form expression for V0. Instead, we construct

a one-step estimator which is designed to reach the efficiency bound. Given the estimator proposed

in the previous section, we perform a one-step Newton-Raphson iteration using an estimate of the

efficient score. The resulting estimator will be semiparametric efficient. This procedure is very much

a generalisation of the one-step Newton-Raphson estimator found in the fully parametric literature:

An initial
√
n-consistent estimator is adjusted by the estimated score function making the resulting

estimator efficient. This procedure has also been used in the semiparametric literature, see for example

Drost and Klaassen and Werker (1997).

The main problem is to obtain an estimator of the efficient score. Here, we rely on the literature on

semiparametric profile estimation. As mentioned earlier, a number of studies have developed a general

theory for semiparametric profile likelihood estimators; see for example Wong and Severini (1991),

Severini and Wong (1992) and Murphy and Van der Vaart (1997, 2000). A very nice property of these

estimators is that, under regularity conditions, they reach the semiparametric efficiency bound. In the

following, we first introduce the semiparametric profile estimator for our specific problem, and then
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define a one-step estimator of θ based on the profile likelihood which is computationally less demanding

than the actual profile estimator. : There exists θ 7→ πθ satisfying π̇θ = π̇∗;
The profile likelihood estimator is defined as

θ̃ = arg max
θ∈Θ

Ln (θ, π̂θ) ,

where π̂θ = arg maxπ∈Π Ln (θ, π), and Π ⊆
©
π ≥ 0|

R
I π (x) dx = 1

ª
is a subspace of all densities.

Intuitively, this estimator should perform better than our estimator, θ̂. The latter is based on a fixed

initial estimator π̂, while the profile estimator relies on an estimator π̂θ which adjusts to θ. The profile

estimator should then reach the semiparametric efficiency bound. General conditions for this can be

found in Murphy and Van der Vaart (2000). These are: (i) there exists a least favourable model, (ii)

π̂θn →P π0, and (iii)

Eπ

h
s (θ0, π̂θn)

hḃπθnii = oP (kθn − θ0k) + oP
³
n−1/2

´
,

for any any random sequence θn →P θ0. If we start with (ii), since Π is an infinite-dimensional space,

this condition is not easily verified.11 One solution to this problem is to apply the method of sieves :12

For each n ≥ 1, let Πn be a finite-dimensional space of densities with support I such that the sequence

{Πn} grows dense in Π as n→∞. We then redefine π̂θ as π̂θ = arg maxπ∈Πn Ln (θ, π). Under regularity

conditions, π̂θ →P πθ for any given θ ∈ Θ, where

πθ = arg max
π∈Π

Eπ [log p (θ, π)] ; (28)

see for example Chen and Shen (1998). Sufficient conditions for (ii) to hold is then (a) θ 7→ πθ is a

continuous mapping and (b) supθ∈Θ kπ̂θ − πθk∞ →P 0. These will hold if {π̂θ|θ ∈ Θ} is stochastically
equicontinuous, c.f. Newey (1991). The curve defined in (28) is moreover a natural candidate for the

least favourable model in (i). Condition (iii) is a smoothness condition on the score function.

While we expect θ̃ to reach the efficiency bound, it is much more computationally burdensome than

θ̂ since at each given value of θ we have to perform a high-dimensional optimisation routine over Πn in

order to obtain π̂θ. A computationally attractive alternative to θ̃ is the following one-step adjustment

estimator,

θ̌ = θ̂ + H−1
n (θ̂, π̂θ̂)Sn(θ̂, π̂θ̂),

where π̂θ is defined as before and θ̂ is the estimator considered in the previous section. The adjustment

term is basically a Newton-Raphson iteration. Under the regularity conditions in Murphy and Van

der Vaart (2000), Sn(θ̂, π̂θ̂) = n−1
Pn

i=1 s
∗
0 (Xi|Xi−1) + oP

¡
n−1/2

¢
. Given this, it should be possible to

show that θ̌ has the desired asymptotic properties, see Bickel et al (1993, Section 7.8). We shall not

pursue this any further here, and leave the proof of this conjecture to future research.

6 Implementation

In this section we discuss the implementation of the estimator. As mentioned earlier, the transition

density p does not in general have a closed form expression, and so one can not directly evaluate it.
11The estimator π̂θ might not even be well-defined and, even if it is, very difficult to compute.
12See Chen (2004) for an overview of this method.
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Instead, a number of different suggestions for how to either approximate or simulate it have been

proposed in the literature. Lo (1988) observes that p solves a linear 2nd order partial differential

equation, and suggests the application of numerical methods to solve it and thereby obtain p. A closed-

form approximation of p can be found in Aït-Sahalia (2002), derived by using Edgeworth-expansion-type

arguments. Durham and Gallant (2002), Elerian et al. (2001), Hurn et al (2003), Nicolau (2002) and

Pedersen (1995) all consider simulation-based maximum-likelihood. Either of the above methods can

be applied to our estimator. As mentioned in the previous section, in the implementation of the above

mentioned methods evaluation of γ is not required, except for the method of Nicolau (2002).

An important part of the estimator is the choice of bandwidths and trimming parameter. An

obvious way of choosing the bandwidths would be cross-validation methods, see Härdle et al. (1990);

other options are rule-of-thumb and plug-in methods, see Silverman (1986) for a discussion of these and

related methods. Most existing methods however are designed to minimise the mean square error, while

the conditions imposed on the set of bandwidths when deriving asymptotic normality of θ̂ require them

to be of a different order. So the above methods do not appear to be directly applicable in our case. This

is demonstrated in Härdle et al. (1992) where results for the optimal bandwidth choice for the average

derivative estimator is derived; it is shown that the optimal bandwidths used in the semiparametric

estimation are not equivalent to the ones minimising the mean squared error. Powell and Stoker (1996)

extend their results to other semiparametric problems. Data-driven methods to obtain bandwidths

in semiparametric estimation are yet to be derived however. It is outside the scope of this paper

to construct a bandwidth choice method tailored to our application of the kernel estimator. Newey

(1994a) suggests that in practice a good method would be to start with the standard cross-validated

choice of bandwidth, and then decrease it until θ̂ does not change too much. Another rule-of-thumb

method is the following: For ||π̂(i) − π
(i)
0 ||∞ = oP

¡
n−1/4

¢
to hold, we require that n

1
4(1+i)hi → ∞ and

n
1

4(ω−i)hi → 0. Restricting hi to hi = cn−qi , these restrictions can be written as n
1

4(1+i)
−qi → ∞, and

n
1

4(ω−i)−qi → 0. Thus, we require that 1
4(ω−i) < qi <

1
4(1+i) , which holds if ω > 2i+1. If this is satisfied,

the optimal choice is hi = cn
− 1
4(1+i) log (n). Using some data-driven method minimising the MSE, we

obtain h∗i = O
¡
n−1/(2i+5)

¢
. One way of choosing hi in an application is then as

hi = h∗0n
1
5
− 1
4(1+i) log (n) = h∗0n

4i−1
20(1+i) log (n) ,

or alternatively hi = h∗in
1

2i+5
− 1
4(1+i) log (n).

Various studies suggest that the dependence structure of the available data will affect the perfor-

mance of the kernel estimators in finite samples. In particular, strong dependence will deteriorate

the finite sample performance. Hall et al. (1995) give theoretical results concerning robustness of the

cross-validation procedure towards dependence, while Pritsker (1998), who reconsidered the work of

Aït-Sahalia (1996b), demonstrates that for the data set used there, the asymptotic distribution of the

marginal density estimator provided an unsatisfactory approximation of the finite-sample distribution.

It appeared that the major problem was the strong dependence between the observations, which may

slow down the convergence of the kernel density estimator; in such cases the use of the asymptotic

distribution is not appropriate for tests and confidence bands.13 The same problem is reported by
13 In a different context, Fan (1994) argues that rather the problems are caused by big differences between true and

nominal sizes of the test in finite sample.
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Chapman and Pearson (2000) who also give evidence of potential boundary problems of the kernel

estimates.

Another potential problem with the performance of our estimator is that kernel estimators of density

derivatives appear to be systematically biased in finite sample. Stoker (1993) give theoretical evidence

of a systematic bias towards zero of these, and suggests a method for correcting for this bias in weighted

average derivative estimators; his results are generalised by Newey et al. (1992), see also Newey et al

(2004). These results indicate that great care should be taken when choosing the bandwidths, and

that the use of the asymptotic distribution to approximate the finite sample distribution of non- and

semiparametric estimators may not be a terribly good idea. In the worst case, the estimator of the drift

and diffusion term may be heavily biased. This lends support to the application of bootstrap methods

when conducting inference.

7 A Simulation Study

In this section we present results from a small simulation study. The simulation study demonstrates

that the estimator performs well for moderate sample sizes, suggesting that the concerns put forward

in the previous section may not be so relevant.

The estimator is implemented using the approximation of p suggested in Aït-Sahalia (2002). Let

p(M,N) denote the approximation whereM ≥ 1 and N ≥ 1 are integers; asM,N →∞, p(M,N) (x |x0 )→
p (x |x0 ) uniformly over (x, x0) on any compact set under regularity conditions on µ and σ2, c.f. Aït-

Sahalia (2002, Theorem 1). The (M,N)th approximation requires the evaluation of the N first deriva-

tives of µ and σ2.

We choose a model in Class 1, so in order to implement the procedure for a given data set, we

perform the following three-step procedure:

1. Obtain π̂(i) for some kernel K and bandwidth hi, 0 ≤ i ≤ N + 1.

2. Obtain θ̂ using the approximate MLEmethod for given (M,N)-parameter with π̂(i), 0 ≤ i ≤ N+1,

plugged in.

3. Calculate µ̂ (x) = µ(x; θ̂, π̂).

We have 4 parameters ,which have to be chosen to run the above procedure: The kernel K, the

bandwidth h, the trimming parameter a, and the approximation order (M,N). One would expect that

there would be a trade off between the size of (M,N) and the estimation of π: As (M,N) goes to infinity,

the approximate likelihood approaches the true one; on the other hand, in the actual implementation

a large value of (M,N) requires a large number of derivatives of π to be estimated. However, in the

simulation study it was found that the estimator was very stable towards the choice of (M,N). It

appears that the higher order terms of the approximation (and thereby the estimation of higher order

derivatives) are not terribly important.14 On the other hand, one has to be careful with the choice of

the bandwidths for π̂(i), 0 ≤ i ≤ 3; we found that the estimator of θ was relatively sensitive towards

14But this may be specific to the model considered here.
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choice of hi, 0 ≤ i ≤ 3. The trimming parameter was chosen such that only observations between the

2.5th and 97.5th the empirical percentile were included in the estimation of θ; the full data set was

used in the preliminary estimation of π and its derivatives however. We tried out other percentiles in

the range 0-5 and 95-100 respectively without any significant changes in the results. We also tried out

various kernels, finding that the performance of the estimator appears to be very robust towards the

choice of kernel. In particular, in practice higher order kernels did provide any significant improvement

on the performance of the estimator.

The model we simulate from is the so-called CIR- model suggested by Cox et al. (1985),

dXt = µ (Xt) dt + θ
p
XtdWt,

µ (x) = 0.5 (0.08− x) ,

with θ =
√

0.02 = 0.1414. The specification of µ and σ2 ensures that the data generating process

is stationary. In the estimation, µ (·) and θ are the unknown parameters of interest. We set the

time distance between observations to ∆ = 1/12. The advantage of this model is that the transition

density is known so we can perform actual MLE when we allow ourselves to use the information that

µ (x) = 0.5 (0.08− x). This allows us to compare the semiparametric and actual MLE. We simulate n

observations of the process using the standard Euler scheme. For each data set we then go through the

steps 1.-3. given above. We employ the second rule-of-thumb method suggested in the previous section

to choose the bandwidths for each data set. The results reported below could probably be improved

upon by using data-driven bandwidth selection procedures, but our rule-of-thumb method seems to do

a good job.

We simulate 1000 data sets, where each data set consists of n = 500 observations, and we choose

M = 3, 4, 5 and N = 2M . We consider the semiparametric estimator θ̂
(M,N)

500 for each of the 3 choices of

(M,N) and also the actual fully parametric MLE, θ̂0,500. In Figure 1, we have for each of the estimators

made a QQ-plot of its empirical distribution against a N
¡
θ, ŝ2

¢
distribution where ŝ2 is the estimator’s

empirical variance. As can be seen, there are some slight problems with θ̂0,500 in the left tail, which

owes to numerical problems in the optimisation procedure. But the semiparametric estimator performs

remarkably well with the choice of (M,N) having a negligible effect on the performance. The estimators

are close to being unbiased: θ̂0,500 has empirical mean 0.1416 and std. 0.050 while θ̂
(M,N)

500 has empirical

mean 0.1410 (0.0047), 0.1412 (0.0049) and 0.1413 (0.0049) for M = 3, 4, 5. This indicates that for this

specific model, the adjustment term δ is small.15 Next, we report on the nonparametric part, µ. In

Figure 2, the estimated drift for M = 5 is plotted together with the actual drift. As can bee seen,

the estimator is biased but the true drift lies within its 95% confidence bands in the major part of

the domain. However, in the left tail there appears to be problems. As expected, the estimator of the

nonparametric part does not perform as well as the parametric part due to the slower convergence rate

of the former.
15This may be due to the aforementioned numerical problems experienced with the MLE though, since these increase

its empirical variance.
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8 Conclusion

We have considered two broad classes of diffusion models where either the drift or the diffusion term of

the model is left unspecified while the other is specified up to a finite-dimensional parameter. Under the

assumption of stationarity, estimators of both the parametric and nonparametric part were proposed,

and their asymptotic properties were derived. We suggested that in the practical implementation of the

estimator, approximate or simulation-based methods should be applied. Under suitable conditions these

will have asymptotically negligible effects on the performance of the estimator. A small simulation study

was carried out which supported the theoretical results. An approximation of the transition density

was implemented, and we found that the choice of the approximation order had a small impact on the

performance of the estimator, while the choice of bandwidths appeared to be important.

Various issues and extensions related to this study could be of interest to investigate in future

research. As observed earlier, one may wish to allow for weak non-stationarity of the processes. Another

important extension would be to consider multivariate diffusion models. It could also be of interest

to consider other types of semiparametric continuous-time models. Here, we have restricted the noise

process driving the SDE to be a Brownian motion, while allowing for an unspecified drift or diffusion

term. One could take the alternative approach of specifying the two while leaving the noise process

unspecified. This approach is pursued by Werker et al. (2000) where an extended version of the

Vasicek (1977) model is considered. Finally, the issue of semiparametric efficiency was only discussed

heuristically here; rigorous results in this area for the two classes of diffusion models are yet to be

derived.
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A Proofs

Proof of Theorem 1. We have

µ̂ (x)− µ0 (x) =
1

2
σ2 (x; θ0)

"
π̂(1) (x)

π̂ (x)
− π

(1)
0 (x)

π0 (x)

#

+
1

2

h
∂xσ

2(x; θ̂)− ∂xσ
2 (x; θ0)

i
+

π̂(1) (x)

2π̂ (x)

h
σ2(x; θ̂)− σ2 (x; θ0)

i
,

where

∂ixσ
2(x; θ̂)− ∂ixσ

2 (x; θ0) = ∂ixσ̇
2
¡
x; θ̄i

¢
(θ̂ − θ0) = OP

³
n−1/2

´
,

for some θ̄i ∈ [θ0, θ̂], i = 0, 1, while

√
nh3

π̂(1) (x)

π̂ (x)
− π

(1)
0 (x)

π0 (x)
=

1

π0 (x)

√
nh3[π̂(1) (x)− π

(1)
0 (x)]

−π
(1)
0 (x)

π20 (x)

√
nh3 [π̂ (x)− π0 (x)]

+
√
nh3O

³
|π̂(1) (x)− π

(1)
0 (x) |2 + |π̂ (x)− π0 (x)|2

´
.

Using standard methods for kernel estimators, see Robinson (1983), we obtain

√
nh3{π̂(1) (xi)− π

(1)
0 (xi)}Ni=1

d→ N (0, Vπ) ,

where Vπ = diag({Vπ (xi)}Ni=1) with Vπ (x) = π0 (x) ||K(1)||22, while the two remainder terms are oP (1),

c.f. Lemma 39. The first part of the theorem now follows from Slutsky’s Theorem. The uniform

convergence result is obtained by combining the proof of Lemma 11 with 39.

Proof of Theorem 2. By Lemma 23 and arguments similar to the ones of the previous proof,

σ̂2 (x)− σ20 (x) = 2

Z x

l
µ (y; θ0)π0 (y)dy[

1

π̂ (x)
− 1

π0 (x)
] + OP (n−1/2),

where
1

π̂ (x)
− 1

π0 (x)
= − 1

π20 (x)
[π̂ (x)− π0 (x)] +

[π̂ (x)− π0 (x)]2

4 (λπ̂ (x) + (1− λ)π0 (x))3
,

for some λ ∈ [0, 1]. Using standard results for kernel estimators, see e.g. Robinson (1983), we obtain

√
nh {π̂ (xi)− π0 (xi)}Ni=1

d→ N (0, Vπ) ,

where Vπ = diag({Vπ (xi)}Ni=1) with Vπ (x) = π0 (x) ||K||22, while

π̂ (x)− π0 (x) = OP (n−1/2h−1) + OP (hω).

Slutsky’s Theorem now gives the claimed asymptotic distribution. The uniform convergence result is

established by combining Lemma 24 and 39.

Proof of Theorem 5. We are allowed to disregard the term
p
π (x) /π (x0) appearing in (34), since

this does not depend on θ. Thus,

θ̂ = arg min
θ∈Θ

Qn (θ, µ̂ (·; θ))

36



where Qn (θ, µ) = 1
n

Pn
i=1 q (Xi|Xi−1; θ, µ) and

q (x|x0; θ, µ) = −1

4
log
¡
σ2 (x; θ)σ2 (x0; θ)

¢
− 1

2∆

Ã
xR
x0

σ (w; θ)−1 dw

!2
+ logEB [ψ (x|x0; θ, µ)] .

We wish to show that 1) supθ∈Θ |Qn(θ, µ̂)−Qn(θ, µ̂0)|→P 0; 2) supθ∈Θ |Qn(θ, µ̂0)−Qn(θ, µ0)|→P

0; 3) supθ∈Θ | |Qn (θ, µ0)−Q (θ, µ0)|, where Q (θ, µ) = Eπ [q (X1|X0; θ, µ)]; and 4) θ 7→ Q (θ, µ0) is

continuous with a unique maximum at θ0.

To prove 1), write

q (x|x0; θ, µ̂)− q (x|x0; θ, µ̂0) = log

µ
EB [ψ (x|x0; θ, µ̂)]

EB [ψ (x|x0; θ, µ̂0)]

¶
.

Using that (x− 1) /x ≤ log (x) ≤ x− 1, we see that

EB [ψ (x|x0; θ, µ̂)]−EB [ψ (x|x0; θ, µ̂0)]
EB [ψ (x|x0; θ, bµ)]

≤ EB [ψ (x|x0; θ, µ̂)]−EB [ψ (x|x0; θ, µ̂0)]
EB [ψ (x|x0; θ, µ̂0)]

.

By Jensen’s inequality and a 2nd order Taylor expansion of the exponential-function, we obtain
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≤ EB

·
exp

·
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1R
0

aλY (Zt (x|x0; θ) ; θ, µ̂) + (1− a)λY (Zt (x|x0; θ) ; θ, µ̂0)dt

¸
×

1R
0

|λY (Zt (x|x0; θ) ; θ, µ̂)− λY (Zt (x|x0; θ) ; θ, µ̂0)| dt
¸
,

where, by Lemma 12,

1R
0

|λY (Zt; θ; θ, µ̂)− λY (Zt; θ; θ, µ̂0)| dt (29)

≤ kλY (·; θ, µ̂)− λY (·; θ, µ̂0)k∞ ≤ C
1P

i=0
||µ̂(i) − µ̂

(i)
0 ||∞.

Using Jensen’s inequality and (29) once more,

EB[exp[∆
R 1
0 aλY (Zt; θ, µ̂) + (1− a)λY (Zt; θ, µ̂0) dt]]

EB [ψ (x|x0; θ, µ̂)]
≤ exp

·
C

1P
i=0
||µ̂(i) − µ̂

(i)
0 ||∞

¸
.

In total,

|EB [ψ (x|x0; θ, µ̂)]−EB [ψ (x|x0; θ, µ̂0)]|
EB [ψ (x|x0; θ, bµ)]

≤ C exp

·
C

1P
i=0
||µ̂(i) − µ̂

(i)
0 ||∞

¸
1P

i=0
||µ̂(i) − µ̂

(i)
0 ||∞, (30)

uniformly in θ. The above bound also holds with µ̂ and µ̂0 interchanged. Claim 1) now follows from

Lemma 11 and 39 together with the assumptions on the bandwidth and trimming parameter in (C1.6a).

To prove Claim 2), write q (x|x0; θ, a) = q(x|x0; θ, T̂ (a)µ0). We then make a Taylor expan-

sion, q (x|x0; θ, a) = q (x|x0; θ, 0) + ∂aq (x|x0; θ, ā)a, ā ∈ [0, a], and claim that |∂aq (x|x0; θ, a)| ≤
b (x|x0)EB[

R 1
0 |∂aT̂ (Zt;a) |2dt]1/2 uniformly in θ ∈ Θ, where Eπ [b (X1|X0)] < ∞. This will yield

2) since

āEπ×B

·Z 1

0
|∂aT̂ (Zt; ā) |2dt

¸1/2
≤ CPπ×B (a/2 ≤ π̂ (Zt) ≤ a)1/2 → 0,
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where the 2nd inequality holds for n sufficiently large. We have

|∂aq (x|x0; θ, a)| ≤ EB [|∂aψ (x|x0; θ, a)|]
EB [ψ (x|x0; θ, a)]

≤ EB

·
∆

1R
0

|∂aλY (Zt; θ, a)| dt
¸
,

Using Lemma 12 together with (C1.2)-(C1.3),

|∂aλY (z; θ, a)| ≤ C (1 + |z|q) |∂aT̂ (z; a) |,

such that by Lemma 13 b (x|x0) = C (1 + |x|q + |x0|q) will satisfy the desired bound. By (A0), b has a
first moment.

Finally, 3) and 4) follow from standard fully parametric uniform LLN, see for example Tauchen

(1985, Lemma 1): Observe that (i) Θ is compact; (ii) θ 7→ q (x|x0; θ, µ0) is continuous; and (iii)
|q (x|x0; θ, µ0)| ≤ C (1 + |x|q + |x0|q) with q given in (C1.3). The last claim follows from the fact that,

by (C1.3) and Lemma 12,

−C log(EB[exp[−C
1R
0

|Bt|q dt]]) (1 + |x|q + |x0|q) ≤ log (EB [ψ (x|x0; θ, µ0)]) ≤ λ̄Y

where EB[exp[−C
R 1
0 |Bt|q dt]] <∞. We have now shown that the conditions of Newey and McFadden

(1994, Theorem 2.1) are satisfied, and thereby that θ̂ is consistent.

Proof of Theorem 6. Define s0 (x|x0) ≡ s (x|x0; θ0, µ0). Lemma 14-22 then establishes that

√
n(θ̂ − θ0) =

¡
H−1
0 + oP (1)

¢ 1√
n

nX
i=1

{s0 (Xi|Xi−1) + δ (Xi−1)}+ oP (1) .

Using a CLT for mixing sequences, see e.g. Doukhan et al. (1994), we are able to conclude that
√
n(θ̂ − θ0)

d→ N
¡
0,H−1

0 Σ∞H
−1
0

¢
, where Σ∞ = Σ0 + 2

P∞
i=1Σi and

Σi = Eπ

£
{s0 (X1|X0) + δ (X0)} {s0 (Xi+1|Xi) + δ (Xi)}0¤ .

The moments Σ∞ and H0 are well-defined by Lemma 14, 21, and 22. Using that the process {Xt} is a
time reversible stationary Markov process, c.f. Hansen and Scheinkman (1995), together with the fact

that is a martingale difference, it holds for any i ≥ 1 that

Eπ

h
s0 (X1|X0) s0 (Xi+1|Xi)

> |Xi,X1,X0
i

= s0 (X1|X0)× 0,

Eπ

h
s0 (X1|X0) δ (Xi)

>
i

= Eπ

h
s0 (Xi−1|Xi) δ (X0)

>
i

= Eπ

h
0× δ (X0)

>
i
,

and similar for the second cross-term.

Proof of Theorem 7. Define

δ̃i = n−1
nX

k=1

∇πs (Xk|Xk−1; θ0, µ̂0) [Kh (·−Xi)] , δ̄i = Eπ [∇πs (X1|X0; θ0, µ̂0) [Kh (·−Xi)]]

and observe that δ̂i = n−1
Pn

k=1∇πs
³
Xk|Xk−1; θ̂, µ̂

´
[Kh (·−Xi)] by definition of the pathwise deriva-

tive of s w.r.t. π, The first part of the proof then follows the one of Newey (1994, Lemma 5.5): By

38



Lemma 16,

||δ̂i − δ̃i|| ≤ C
2X

i,j=0

||∇∂ijx,θµ [Kh (·−Xi)] ||

×


2X

i,j=0

||∂ijx,θµ̂− ∂ijx,θµ̂0||∞ + aEB

·Z 1

0
|∂aT̂ (Zt;a) |2dt

¸1/2
+ ||θ̂ − θ0||

 ,

where ||∇ij
x,θµ [Kh (·−Xi)] ||∞ ≤

Pi+1
k=0 a

−1−kh−1−kk . It is then easily checked that under (C1.6b)

n−1
Pn

i=1 ||δ̂i − δ̃i||2 = oP
¡
n−1/2

¢
. From the proof of Lemma 19 it follows that n−1

Pn
i=1 ||δ̃i −

δ̄i||2 = o
¡
n−1/2

¢
, while by Lemma 21, n−1

Pn
i=1 ||δ̄i − δi||2 = o

¡
n−1/2

¢
with δi = δ (Xi∆). In to-

tal, n−1
Pn

i=1 ||δ̂i − δi||2 = oP
¡
n−1/2

¢
. Assume that d = dim (θ) = 1 (otherwise consider a0δ̂iδ̂ja for

any d-dim. vector a), and obtain

|Ω̂i −Ωi| ≤
1

n

nX
i=1

|δ̂iδ̂j − δiδj |

≤ 1

n

nX
i=1

n
δi|δ̂j − δj |+ |δj(δ̂i − δi)|+ |(δ̂j − δj)(δ̂i − δj)|

o

≤ 2

Ã
1

n

nX
i=1

δ2i

!1/2Ã
1

n

nX
i=1

|δ̂j − δj |2
!1/2

+
2

n

nX
i=1

|δ̂i − δi|2

= oP (n−1/4).

Next, very much copying the arguments of Newey and West (1987, Proof of Theorem 2), it then

follows that V̂ →P V0 under our conditions. Finally, Ĥ →P H0 by Lemma 22.

Proof of Theorem 8. As we did in Class 1, we modify our criterion function, and define

θ̂ = arg min
θ∈Θ

Qn

¡
θ, σ̂2 (·; θ)

¢
,

where Qn

¡
θ, σ2

¢
= 1

n

Pn
i=1 q

¡
Xi|Xi−1; θ, σ2

¢
and

q
¡
x|x0; θ, σ2

¢
= −1

4
log
£
σ2 (x)

¤
− 1

4
log
£
σ2 (x0)

¤
− 1

2∆

µZ x

x0

σ−1 (w) dw

¶2
+ log

¡
EB

£
ψ
¡
x|x0; θ, σ2

¢¤¢
.

We now follow the same three steps as in proof of Theorem 5, and therefore do not give all details. We

have
σ̂20 (z; θ)− σ̂2 (z; θ)

σ̂2 (z; θ)
≤ log

µ
σ̂2 (z; θ)

σ̂20 (z; θ)

¶
≤ σ̂2 (z; θ)− σ̂20 (z; θ)

σ̂20 (z; θ)

where σ̂2 (z; θ) , σ̂20 (z; θ) ≥ σ2. Thus,¯̄̄̄
log

µ
σ̂2 (z; θ)

σ̂20 (zx; θ)

¶¯̄̄̄
≤
°°σ̂2 (·; θ)− σ̂20 (·; θ)

°°
∞

σ2
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With z = x and x0, this establishes the desired bound for the first two terms. The third term satisfiesÃ
xR
x0

σ̂ (x; θ)−1 dw

!2
−
Ã

xR
x0

σ̂0 (x; θ)−1 dw

!2

=

Ã
xR
x0

σ̂ (x; θ)−1 − σ̂0 (x; θ)−1 dw

!Ã
xR
x0

σ̂ (x; θ)−1 + σ̂0 (x; θ)−1 dw

!
,

where

xR
x0

¯̄̄
σ̂ (w; θ)−1 − σ̂0 (w; θ)−1

¯̄̄
dw ≤ σ−1 (|x|+ |x0|)

°°σ̂2 (·; θ)− σ̂20 (·; θ)
°°∞

xR
x0

σ̂ (w; θ)−1 + σ̂0 (w; θ)−1 dw ≤ 2σ−1 (|x|+ |x0|) ,

Define Ẑt = Zt

¡
σ̂2
¢
and Ẑ0t = Zt (σ̂0). We then have¯̄̄̄

¯log

Ã
EB

£
ψ
¡
x|x0; θ, σ̂2

¢¤
EB

£
ψ
¡
x|x0; θ, σ̂20

¢¤!¯̄̄̄¯ ≤ EB[exp[∆
1R
0

|λY (Ẑt; θ, σ̂
2)− λY (Ẑ0t; θ, σ̂

2
0)|dt]]

×EB[
1R
0

|λY (Ẑt; θ, σ̂
2)− λY (Ẑ0t; θ, σ̂

2
0)|dt],

where, using a Taylor expansion together with Lemma 25 and 27,

|λY
³
Ẑt; θ, σ̂

2
0

´
− λY

³
Ẑ0t; θ, σ̂

2
0

´
| ≤ C

¡
1 + a−3

¢ °°σ̂2 − σ̂20
°°
∞ .

This together with Lemma 26, implies that

¯̄
Qn

¡
θ, σ̂2

¢
−Qn

¡
θ, σ̂20

¢¯̄
≤ C (1 + (|x|+ |x0|))a−3

2P
i=0

°°∂ixσ̂2 − ∂ixσ̂
2
0

°°
∞

where, by Lemma 24 and 39 together with (C2.6a), a−3
°°∂ixσ̂2 − ∂ixσ̂

2
0

°°∞ = oP (1), 0 ≤ i ≤ 2, and

Eπ [|X0|] < ∞. Next, define q (x|x0; θ, a) = q(x|x0; θ, T̂ (·; a)σ20 + (1 − T̂ (·;a))σ2). We obtain by

Lemma 25, 26, 27 and (C.1.3) that

|∂aq (x|x0; θ, a)| ≤ b (x|x0) {|∂aT̂ (x; a) |+ |∂aT̂ (x; a) |

+
xR
x0

|∂aT̂ (w; a) |dw +EB[
1R
0

|∂aT̂ (Zt; a)dt|2]1/2},

with b (x|x0) = C(1 + |x|2q + |x0|2q), and conclude |Qn(θ̂, σ̂20) −Qn(θ̂, σ20)| →P 0 by the properties of

T̂ . Finally, supθ∈Θ
¯̄
Qn

¡
θ, σ20

¢
−Q

¡
θ, σ20

¢¯̄
→P 0 where Q

¡
θ, σ20

¢
= Eπ

£
q
¡
X1|X0; θ, σ20

¢¤
since: (i) Θ

is compact; (ii) θ 7→ q
¡
x|x0; θ, σ20 (·; θ)

¢
is continuous; (iii) by (C2.3) and Lemma 25,

¯̄
q
¡
x|x0; θ, σ20

¢¯̄
≤

C(1 + |x|2q + |x0|2q).
Proof of Theorem 9. This follows the same steps as the proof of Theorem 6, now only using Lemma

28-36.

Proof of Theorem 10. The claim is proved in the same fashion as Theorem 7, this time using

Lemma 30, 33, 35 and 36.
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B Lemmas

In this section we state all lemmas used in the proofs of the theorems above without any proofs. These

can be obtained from the author upon request.

B.1 Class 1

Lemma 11 Under (C1.1)-(C1.6a),

||∂jθ µ̂
(k) (·; θ)− ∂jθ µ̂

(k)
0 (·; θ) ||∞ ≤ C

k+1X
i=0

ai−k−2||π̂(i) − π
(i)
0 ||∞,

||∂jθ∂
k
xµ̂ (·; θ)− ∂jθ∂

k
xµ̂0 (·; θ)− ∂jθ∂

k
x∇πµ̂0 (·; θ) [π̂ − π0] ||∞ ≤ C

k+1X
i=0

ai−k−3||π̂(i) − π
(i)
0 ||2∞

uniformly over θ ∈ Θ, where ∂jθ∂kx∇πµ̂0 (·; θ) [dπ] is given in (??)-(??).

Lemma 12 Under (C1.1)-(C1.6a),

°°°∂klx,θλY (·; θ, µ̂)− ∂klx,θλY (·; θ, µ̂0)
°°°
∞
≤ C

k+1X
i,j=0

ai−k−1||∂ijx,θµ̂− ∂ijx,θµ̂
(j)
0 ||∞,

for 0 ≤ k, l ≤ 2. Moreover,

|λY (z; θ, µ)| ≤ C
³

1 + |µ (z; θ)|2 + |µ(1) (z; θ) |
´
,

|λ(1)Y (z; θ, µ) | ≤ C
³

1 + |µ (z; θ)|2 + |µ (z)|µ(1) (z; θ) |+ |µ(2) (z; θ) |
´
,

||λ̇Y (z; θ, µ) || ≤ C
³

1 + |µ (z; θ)|2 + |µ (z)| |µ̇ (z; θ)|+ ||µ̇(1) (z; θ) ||
´
.

Lemma 13 Under (C1.1)-(C1.4),
¯̄
∂iθZt (x|x0; θ)

¯̄
≤ C (1 + |x|+ |x0|+ |Bt|), i = 0, 1, 2.

B.1.1 The Score

Lemma 14 Under (C1.1)-(C1.7), Sn (θ0, µ̂0) = Sn (θ0, µ0) + oP
¡
n−1/2

¢
, where for some δ > 0,

Eπ[
°°s ¡X1|X0; θ0;σ20

¢°°2+δ] <∞.
B.1.2 The Pathwise Derivative of the Score

Lemma 15 Assume that (C1.1)-(C1.5) hold. Then for any direction ∇µ,

k∇s (θ0, µ0) [∇µ]k ≤ b (x|x0)
2X

i,j=0

EB

·
1R
0

||∂i,jx,θ∇µ (Zt) ||2dt
¸1/2

, (31)

where Eπ[b2+δ (X1|X0)] <∞, for some δ > 0.
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Lemma 16 Under (C1.1)-(C1.5), there exist a function b with Eπ

£
b2+δ (X1, X0)

¤
<∞ such that for

all θ ∈ Θ and with ||µ||2,∞ ≡
P2

i,j=0 ||∂
ij
x,θµ||∞,

k∇s (x|x0; θ, µ̂) [dµ]−∇s (x|x0; θ0, µ0) [dµ]k (32)

≤ b (x|x0) ||dµ||2,∞

(
||µ̂− µ̂0||2,∞ + aEB

·Z 1

0
|∂aT̂ (Zt; a) |2dt

¸1/2
+ kθ − θ0k

)

Lemma 17 Under (C1.1)-(C1.6), there exists a function b with Eπ [b (X1|X0)] <∞ such that

ks (θ0, µ̂)− s (θ0, µ̂0)−∇s (θ0, µ̂0) [µ̂− µ̂0]k ≤ b (x|x0)
2X

i,j=0

||∂ijx,θµ̂− ∂ijx,θµ̂0||∞.

We define

∇πs (µ) [dπ] ≡ ∇s (µ) [∇πµ (x) [π̂ − π0]] , (33)

where ∇πµ is given in Lemma 11. This function is the pathwise derivative w.r.t. π.

Lemma 18 Under (C1.1)-(C1.5),

k∇s (x|x0; θ, µ̂0) [µ̂− µ̂0]−∇πs (x|x0; θ, µ̂0) [π̂ − π0]k ≤ b (x|x0)
3X

i=0

ai−5||π̂(i) − π
(i)
0 ||2∞

uniformly in θ ∈ Θ, where ∇πs is given in (33) and Eπ [b (X1|X0)] <∞.

B.1.3 The Adjustment Term

In this section we show that the pathwise derivative of the score can be written as a normalised sum

and a remainder term which can be ignored.

Lemma 19 Under (C1.1)-(C1.6), ∇Sn (µ̂0) [µ̂− µ̂0] = ∇S (µ̂0) [µ̂0 − µ̂0] + oP
¡
n−1/2

¢
.

Lemma 20 Under (C1.1)-(C1.6), ∇S (µ̂0) [µ̂− µ̂0] = ∇S (µ0) [µ̂− µ̂0] + oP
¡
n−1/2

¢
.

Lemma 21 Under (C1.1)-(C1.7), there exists a function δ with Eπ [δ (X0)] = 0 and Eπ

h
kδ (X0)k2+ε

i
<

∞ for some ε > 0 such that

∇S (µ0) [µ̂− µ̂0] =
1

n

nP
i=1

δ (Xi) + oP (n−1/2).

B.1.4 The Hessian

Lemma 22 Under (C1.1)-(C1.7), supθ∈Θ kHn (θ, µ̂)−H (θ, µ0)k→P 0.
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B.2 Class 2

Lemma 23 Assume that: (i) (A0) holds: (ii) θ 7→ µ (x; θ) is k + 1 times continuously differentiable,

satisfying ||∂iθµ (x; θ) || ≤ C |x|q̄/(2+δ) for 0 ≤ i ≤ k + 1 and some δ > 0. Then

sup
(x,θ)∈R×Θ

¯̄̄̄
¯ 1n

nX
i=1

1(l,x) (Xi)∂
k
θµ (Xi; θ)−

Z x

l
π0 (y) ∂kθµ (y; θ) dy

¯̄̄̄
¯ = OP (n−1/2).

Lemma 24 Under (C2.1)-(C2.4), the following holds uniformly over (x, θ) ∈ R ×Θ, 0 ≤ i ≤ 4, and

0 ≤ j ≤ 2:

||∂ix∂jθ σ̂
2 (x; θ)− ∂ix∂

j
θσ̂
2
0 (x; θ) || ≤ OP (a−1−in−1/2) + C

iP
k=0

a−2−i+k||π̂(k) − π
(k)
0 ||∞,

||∂ix∂
j
θσ̂
2 (x; θ0)− ∂ix∂

j
θ σ̂
2
0 (x; θ0)− ∂ix∂

j
θ∇πσ̂

2
0 (x; θ0) [π̂ − π0] ||

≤ OP (1)×
iP

k=0

a−3−i+k||π̂(k) − π
(k)
0 ||2∞ + OP (n−1/2)×

iP
k=0

a−2−i+k||π̂(k) − π
(k)
0 ||∞.

Lemma 25 Under (C2.1)-(C2.4), (i) − (1 +C |z|q) ≤ λY
¡
z; θ, σ20

¢
≤ λ̄Y and (ii) |λ(1)Y

¡
z; θ, σ̂20

¢
| ≤

C +
¯̄
µ(2) (z; θ)

¯̄
.

Lemma 26 Under (C2.1)-(C2.4) and (C2.6a),

¯̄̄
∂ijx,θλY

¡
z; θ, σ̂2

¢
− ∂ijx,θλY

¡
z; θ, σ̂20

¢¯̄̄
≤ C

i+2X
k=0

jX
l=0

a−3−i||∂klx,θσ̂2 − ∂klx,θσ̂
2
0||∞

for 0 ≤ i, j ≤ 2.

Lemma 27 Under (C2.1)-(C2.4) and (C2.6a), for all (x, x0, θ) ∈ R2 ×Θ,

1. |Ẑt (θ) |, |Ẑ0t (θ) |, |Z0t (θ)| ≤ C (|x|+ |x0|+ |Bt|).

2.

|Ẑt (θ)− Ẑ0t (θ) | ≤ C
°°σ̂2 − σ̂20

°°
∞ ,

||∂kθZt (θ)− ∂kθZ0t (θ) || ≤ b (x|x0)
kX
i=0

°°∂iθσ̂2 − ∂iθσ̂
2
0

°°
∞ ,

where Eπ [b (X1|X0)] <∞.

B.2.1 The Score

Lemma 28 Under (C2.1)-(C2.7),

Sn
¡
θ0; σ̂

2
0

¢
= Sn

¡
θ0;σ

2
0

¢
+ oP (n−1/2),

where Eπ[
°°s ¡X1|X0; θ0;σ20¢°°2+δ] <∞.
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B.2.2 The Pathwise Derivative of the Score

Lemma 29 Assume that (C2.1)-(C2.6) hold. Then

°°∇s ¡x|x0; θ, σ20¢ £∇σ2¤°° ≤ C
1P

j=0

³
||∂jθ∇σ2 (x) ||+ ||∂jθ∇σ2 (x0) ||

´
+b (x|x0)

1P
j=0

Z max{x,x0}

min{x,x0}
|∂jθ∇σ

2 (w) |dw

+b (x|x0)
2P

i=0

1P
j=0

EB

·Z 1

0
||∂ix∂

j
θ∇σ

2 (Zt) ||2dt
¸1/2

,

where Eπ

£
b2+δ (X1|X0)

¤
<∞.

Lemma 30 Under (C2.1)-(C2.5), there exist a function b with Eπ

£
b2+δ (X1, X0)

¤
<∞ such that for

all θ ∈ Θ and with ||σ2||3,1,∞ ≡
P3

i=0

P1
j=0 ||∂

ij
x,θσ

2||∞,°°∇s ¡x|x0; θ, σ̂2¢ £dσ2¤−∇s ¡x|x0; θ0, σ20¢ £dσ2¤°°
≤ b (x|x0) ||dσ2||3,1,∞

n
||σ̂2 − σ20||3,1,∞ + kθ − θ0k+ aÂ

o
,

where

Â = |∂aT̂ (x; a) |+ |∂aT̂ (x; a) |+
Z max{x,x0}

min{x,x0}
|∂aT̂ (w; a) |dw + EB

·Z 1

0
|∂aT̂ (Zt;a) |2dt

¸1/2
.

Lemma 31 Under (C2.1)-(C2.6),°°Sn ¡θ0, σ̂2¢− Sn
¡
θ0, σ̂

2
0

¢
−∇Sn

¡
θ0, σ̂

2
0

¢ £
σ̂2 − σ̂20

¤°° ≤ OP (1)×
°°σ̂2 − σ̂20

°°2
∞ .

We define ∇πs
¡
x|x0; θ, σ2

¢
[dπ] = ∇s

¡
x|x0; θ, σ2

¢ £
∇σ2 [dπ]

¤
, and obtain

Lemma 32 Under (C2.1)-(C2.6), there exists b with Eπ [b (X1|X0)] <∞ such that

°°∇s ¡x|x0; θ0, σ̂20¢ £σ̂2 − σ̂20
¤
−∇πs

¡
x|x0; θ0, σ̂20

¢
[π̂ − π0]

°° ≤ b (x|x0)
3P

i=0
ai−5||π̂(i) − π

(i)
0 ||2∞.

B.2.3 The Adjustment Term

Lemma 33 Under (C2.1)-(C2.7),

∇Sn
¡
θ0, σ̂

2
0

¢ £
σ̂2 − σ20

¤
= ∇S

¡
θ0, σ̂

2
0

¢ £
σ̂2 − σ20

¤
+ oP (n−1/2).

Lemma 34 Under (C2.1)-(C2.7),

∇S
¡
θ0, σ̂

2
0

¢ £
σ̂2 − σ̂20

¤
= ∇S

¡
θ0, σ

2
0

¢ £
σ̂2 − σ̂20

¤
+ oP (n−1/2).

Lemma 35 Under (C2.1)-(C2.7), there exists a function δ with Eπ [δ (X0)] = 0 and Eπ

h
kδ (X0)k2+�

i
<

∞ such that

∇S
¡
θ0, σ

2
0

¢ £
σ̂2 − σ̂20

¤
=

1

n

nX
i=1

δ (Xi) + oP (n−1/2).
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B.2.4 The Hessian

Lemma 36 Under (C2.1)-(C2.7), supθ∈Θ
°°Hn

¡
θ, σ̂2

¢
−H

¡
θ, σ20

¢°°→P 0.


