Cookies?
Library Header Image
LSE Research Online LSE Library Services

Semiparametric regression analysis under imputation for missing response data

Hardle, Wolfgang, Linton, Oliver and Wang, Qihua (2003) Semiparametric regression analysis under imputation for missing response data. Econometrics; EM/2003/454, EM/03/454. Suntory and Toyota International Centres for Economics and Related Disciplines, London School of Economics and Political Science, London, UK.

[img]
Preview
PDF
Download (332Kb) | Preview

Abstract

We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator, a marginal average estimator and a (marginal) propensity score weighted estimator are defined. All the estimators are proved to be asymptotically normal, with the same asymptotic variance. They achieve the semiparametric efficiency bound in the homoskedastic Gaussian case. We show that the Jackknife method can be used to consistently estimate the asymptotic variance. Our model and estimators are defined with a view to avoid the curse of dimensionality, and that severely limits the applicability of existing methods. The empirical likelihood method is developed. It is shown that when missing responses are imputed using the semiparametric regression method the empirical log-likelihood is asymptotically a scaled chi-square variable. An adjusted empirical log-likelihood ratio, which is asymptotically standard chi-square, is obtained. Also, a bootstrap empirical log-likelihood ratio is derived and its distribution is used to approximate that of the imputed empirical log-likelihood ratio. A simulation study is conducted to compare the adjusted and bootstrap empirical likelihood with the normal approximation-based method in terms of coverage accuracies and average lengths of confidence intervals. Based on biases and standard errors, a comparison is also made by simulation between the proposed estimators and the related estimators. Furthermore, a real data analysis is given to illustrate our methods.

Item Type: Monograph (Discussion Paper)
Official URL: http://sticerd.lse.ac.uk
Additional Information: © 2003 the authors
Library of Congress subject classification: H Social Sciences > HB Economic Theory
Journal of Economic Literature Classification System: C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods: General > C14 - Semiparametric and Nonparametric Methods
C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods: General > C13 - Estimation
C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods: General > C12 - Hypothesis Testing
C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods: General > C10 - General
Sets: Research centres and groups > Financial Markets Group (FMG)
Collections > Economists Online
Departments > Economics
Research centres and groups > Suntory and Toyota International Centres for Economics and Related Disciplines (STICERD)
Collections > LSE Financial Markets Group (FMG) Working Papers
Rights: http://www.lse.ac.uk/library/usingTheLibrary/academicSupport/OA/depositYourResearch.aspx
Identification Number: EM/03/454
Date Deposited: 27 Apr 2007
URL: http://eprints.lse.ac.uk/2206/

Actions (login required)

Record administration - authorised staff only Record administration - authorised staff only