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Abstract 
 

 
We develop inference tools in a semiparametric regression model with missing 
response data. A semiparametric regression imputation estimator, a marginal 
average estimator and a (marginal) propensity score weighted estimator are defined. 
All the estimators are proved to be asymptotically normal, with the same asymptotic 
variance. They achieve the semiparametric efficiency bound in the homoskedastic 
Gaussian case. We show that the Jackknife method can be used to consistently 
estimate the asymptotic variance. Our model and estimators are defined with a view 
to avoid the curse of dimensionality, and that severely limits the applicability of 
existing methods. The empirical likelihood method is developed. It is shown that 
when missing responses are imputed using the semiparametric regression method 
the empirical log-likelihood is asymptotically a scaled chi-square variable. An 
adjusted empirical log-likelihood ratio, which is asymptotically standard chi-square, is 
obtained. Also, a bootstrap empirical log-likelihood ratio is derived and its distribution 
is used to approximate that of the imputed empirical log-likelihood ratio. A simulation 
study is conducted to compare the adjusted and bootstrap empirical likelihood with 
the normal approximation-based method in terms of coverage accuracies and 
average lengths of confidence intervals. Based on biases and standard errors, a 
comparison is also made by simulation between the proposed estimators and the 
related estimators. Furthermore, a real data analysis is given to illustrate our 
methods. 
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1 Introduction

In many scientific areas, a basic task is to assess the simultaneous influence of several

factors (covariates) on a quantity of interest (response variable). Regression mod-

els provide a powerful framework, and associated parametric, semiparametric and

nonparametric inference theories are well established. However, in practice, often

not all responses may be available for various reasons such as unwillingness of some

sampled units to supply the desired information, loss of information caused by un-

controllable factors, failure on the part of investigator to gather correct information,

and so forth. In this case, the usual inference procedures cannot be applied directly.

A common method for handling missing data in a large data set is to impute (i.e., fill

in) a plausible value for each missing datum, and then analyze the result as if they

were complete. Commonly used imputation methods for missing response include

linear regression imputation (Yates (1993); Healy and Westmacott (1996)), kernel

regression imputation (Cheng (1994)), ratio imputation (Rao (1996)) and among

others.

Let X be a d-dimensional vector of factors and Y be a response variable influ-

enced by X. In practice, one often obtains a random sample of incomplete data

(Xi, Yi, δi), i = 1, 2, . . . , n, (1.1)

where all the X ′
is are observed and δi = 0 if Yi is missing, otherwise δi = 1. It is

desired to estimate the mean of Y , say θ. This kind of sampling scheme can arise

due to double or two-stage sampling, where first a complete sample of response

and covariate variables is obtained and then some additional covariate values are

obtained, perhaps because it is expensive to acquire more Y ′s.

Cheng (1994) applied kernel regression imputation to estimate the mean of Y ,

say θ. Cheng (1994) imputed every missing Yi by kernel regression imputation and

estimated θ by

θ̂c =
1

n

n∑

i=1

{δiYi + (1− δi)m̂n(Xi)},

where m̂n(·) is the Nadaraya-Watson kernel estimator based on (Xi, Yi) for i ∈ {i :

δi = 1}. Under the assumption that the Y values are missing at random (MAR),
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Cheng (1994) established the asymptotic normality of a trimmed version θ̂ and gave

a consistent estimator of its asymptotic variance. With the nonparametric kernel

regression imputation scheme, Wang and Rao (2002a) develop imputed empirical

likelihood approaches for constructing confidence intervals of θ.

In practice, however, the nonparametric kernel regression imputation estimator

of Cheng and the imputed empirical likelihood may not work well because the di-

mension of X may be high and hence the curse of dimensionality may occur (Stone

(1980), Silverman (1986)). Although this does not affect the first order asymp-

totic theory, it does show up dramatically in the higher order asymptotics, see Lin-

ton (1995) for example. More importantly, dimensionality substantially affects the

practical performance of estimators, and the reliability of the asymptotic approxi-

mations. Similar comments apply to the propensity score weighting methods when

the propensity score itself depends on many covariates. Without further restrictions

nonparametric regression methods only work well in low dimensional situations. In-

deed, much recent work in statistics has been devoted to intermediate structures

like additivity, index models, or semiparametric functional form, in which the curse

of dimensionality is mitigated. See for example Hastie and Tibhirani (1990) for a

discussion.

Wang and Rao (2001, 2002b) considered the linear regression models and devel-

oped the empirical likelihood inference by filling in all the missing response values

with linear regression imputation. In many practical situations, however, the lin-

ear model is not complex enough to capture the underlying relation between the

response variables and its associated covariates.

A natural compromise between the linear model and the fully nonparametric

model, is to allow only some of the predictors to be modelled linearly, with oth-

ers being modelled nonparametrically. This motivates us to consider the following

semiparametric regression model:

Yi = X>
i β + g(Ti) + εi, (1.2)

where Y ′
i s are i.i.d. scalar response variables, X ′

is are i.i.d. d-variable random

covariate vectors, T ′
is are i.i.d. d∗-variable random covariate vectors, the function

g(·) is unknown and the model errors εi are independent with conditional mean
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zero given the covariates. We only treat the case where d∗=1 but our techniques

and results apply more generally with slight modification. Clearly, the partially

linear models contain at least the linear models as a special case. Suppose that the

model is linear, but we specify it as partially linear models. The resulting estimator

based on the partially linear model is still consistent. Hence, the partially linear

model is a flexible one and allows one to focus on particular variables that are

thought to have very nonlinear effects. The partially linear regression model was

introduced by Engle, Granger, Rice and Weiss (1986) to study the effect of weather

on electricity demand. The implicit asymmetry between the effects of X and T may

be attractive when X consists of dummy or categorical variables, as in Stock (1989,

1991). This specification arises in various sample selection models that are popular

in econometrics, see Ahn and Powell (1993), and Newey, Powell, and Walker (1990).

In fact, the partially linear model has also been applied in many other fields such

as biometrics, see Gray (1994), and have been studied extensively for complete data

settings, see Heckman (1986), Rice (1986), Speckman (1988), Cuzick (1992a, b),

Chen (1988) and Severini, Staniswalis (1994) and Härdle, Liang and Gao (2000).

An alternative modelling strategy is to restrict the propensity score function

P (x, t) to be semiparametric, say generalized partially linear, and to use the propen-

sity score methods to estimate θ. Propensity score based methods are very popular

in applied studies, especially in measuring ‘treatment effects’, following the influ-

ential paper by Rosenbaum and Rubin (1983). See Heckman, Ichimura, and Todd

(1998) for a recent discussion from an economists point of view and a semiparamet-

ric application to the evaluation of social programs. This would be an interesting

alternative to our approach, and one that also avoids the curse of dimensionality.

One argument in favor of our approach is that modelling of an ancillary quantity

like the propensity score does not seem as appealing as modelling the relationship

of interest. In addition, reasonable semiparametric models of the propensity score

would imply nonlinear semiparametric estimation, which would be less attractive in

practice, we believe. Nevertheless, this remains a sensible and interesting alternative

to our approach.

In this paper, we are interested in inference on the mean of Y , say θ, under
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regression imputation of missing responses based on the semiparametric regression

model (1.2). For this model, we consider the case where some Y -values in a sample

of size n may be missing, but X and T are observed completely. That is, we obtain

the following incomplete observations

(Yi, δi, Xi, Ti), i = 1, 2, . . . , n

from model (1.2), where all the X ′
is and T ′

is are observed and δi = 0 if Yi is missing,

otherwise δi = 1. Throughout this paper, we assume that Y is missing at random

(MAR). The MAR assumption implies that δ and Y are conditionally independent

given X and T . That is, P (δ = 1|Y, X, T ) = P (δ = 1|X,T ). MAR is a common

assumption for statistical analysis with missing data and is reasonable in many

practical situations, see Little and Rubin (1987,Chapter 1).

We propose several estimators of θ in the partially linear model that are simple

to compute and do not rely on high dimensional smoothing, thereby avoiding the

curse of dimensionality. Under the model specification the estimators are consistent

and asymptotically equivalent. We obtain their asymptotic distribution and provide

consistent variance estimators based on the jacknife method. We also show that our

estimators are semiparametrically efficient in the special case that εi are homoskedas-

tic and Gaussian. When the model specification (1.2) is incorrect, our estimators are

inconsistent; we characterize their biases. One of our estimators has a version of the

double robustness property of Scharfstein, Rotnizky, Robins (1999). We also develop

empirical likelihood and bootstrap empirical likelihood methods that deliver better

inference than standard asymptotic approximations. Though empirical likelihood

approaches are also developed with the nonparametric imputation scheme of Cheng

in Wang and Rao (2002a) and linear regression imputation scheme in Wang and Rao

(2001, 2002b), this paper uses semiparametric regression imputation scheme and use

semiparametric techniques to develop an adjusted empirical likelihood and a par-

tially smoothed bootstrap empirical likelihood. The developed partially smoothed

bootstrap empirical likelihood method has an advantage over the adjusted empir-

ical likelihood. That is, it avoids estimating the unknown adjusting factor. This

is especially attractive in some cases when the adjustment factor is difficult to es-

timate efficiently. This method is also very useful for the problem considered by
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Wang and Rao (2002a) since the adjusted factors are difficult to estimate well for

nonparametric regression imputation scheme because of “curse of dimensionality”.

Unfortunately, Wang and Rao (2002a,b) do not develop such a method. Wang and

Rao (2001) considers a different inference problem from this paper. They do not

consider inference on the response mean, but develops empirical likelihood inference

for regression coefficient only in linear regression models with fixed design.

The empirical likelihood method, introduced by Owen (1988), has many advan-

tages over normal approximation methods and the usual bootstrap approximation

approaches for constructing confidence intervals. For example, the empirical likeli-

hood confidence intervals do not have a predetermined shape, whereas confidence

intervals based on the asymptotic normality of an estimator have a symmetry implied

by asymptotic normality. Also, empirical likelihood confidence intervals respect the

range of the parameter: if the parameter is positive, then the confidence intervals

contains no negative values. Another preferred characteristic is that the empiri-

cal likelihood confidence interval is transformation respecting; that is, an empirical

likelihood confidence interval for φ(θ) is given by φ applied to each value in the

confidence interval for θ.

The outline of the paper is as follows. In Section 2, we define the estimators of θ

and state their asymptotic properties. In Section 3, we make some comparisons be-

tween the proposed estimators and the related estimators and discuss the asymptotic

efficiency problem. We then develop methods for inference about θ based on empiri-

cal likelihood and bootstrap. In Section 4, an adjusted empirical log-likelihood ratio

is derived and its asymptotic distribution is shown to be a standard chi-square with

one degree of freedom, and a bootstrap empirical log-likelihood ratio is derived and

its distribution is used to approximate that of the imputed empirical log-likelihood

ratio. In Section 5, a simulation study is conducted to calculate the biases and the

standard errors of the proposed estimators and compare the finite sample properties

of the proposed empirical likelihood methods with the normal approximation based

method. In Section 6, a real data analysis is given to illustrate the proposed meth-

ods. The proofs for the main results are delayed to the Appendix A. In Appendix

B, we establish the semiparametric efficiency bound for the case where ε is i.i.d.
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Gaussian. We use “
L−→” to denote convergence in distribution and “

p−→” to denote

convergence in probability.

2 Estimation and Asymptotic Normality

We define the three different estimators that we will analyze in this paper. All three

are based on only one-dimensional smoothing operations and are closely related.

Premultiplying (1.2) by the observation indicator we have

δiYi = δiX
>
i β + δig(Ti) + δiεi,

and taking conditional expectations given T we have

E [δiYi|Ti = t] = E
[
δiX

>
i |Ti = t

]
β + E [δi|Ti = t] g(t),

from which it follows that

g(t) = g2(t)− g1(t)
>β, (2.1)

where

g1(t) =
E [δX|T = t]

E [δ|T = t]
and g2(t) =

E [δY |T = t]

E [δ|T = t]
.

It follows that

δi [Yi − g2(Ti)] = δi [Xi − g1(Ti)]
> β + δiεi, (2.2)

which suggests that an estimator of β can be based on a least squares regression

using δi = 1 observations and estimated gj(·), j = 1, 2.

Let K(·) be a kernel function and hn be a bandwidth sequence tending to zero

as n →∞, and define the weights

Wnj(t) =
K

(
t−Tj

hn

)

n∑
j=1

δjK
(

t−Tj

hn

) .

Then g̃1n(t) =
n∑

j=1
δjWnj(t)Xj and g̃2n(t) =

n∑
j=1

δjWnj(t)Yj are consistent estimates

of g1(t) and g2(t) respectively. From (2.2), the estimator of β is then defined as the

one satisfying:

min
β

n∑

i=1

δi{(Yi − g̃2n(Ti))− (Xi − g̃1n(Ti))β}2. (2.3)
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From (2.3), it is easy to obtain that the estimator of β is given by

β̂n =

[
n∑

i=1

δi{(Xi − g̃1n(Ti))(Xi − g̃1n(Ti))
>}

]−1 n∑

i=1

δi{(Xi − g̃1n(Ti))(Yi − g̃2n(Ti))}

based on the observed triples (Xi, Ti, Yi) for i ∈ {i : δi = 1}. This is like the Robinson

(1988) estimator of β except that it is based on the complete subsample [note also

that gj are not simple conditional expectations as in his case]. (2.1) suggests that

an estimator of g(t) can be defined to be

ĝn(t) = g̃2n(t)− g̃>1n(t)β̂n

by replacing β, g1(t) and g2(t) in (2.1) by β̂n, g̃1n(t) and g̃2n(t).

The regression imputation estimator of θ is then defined to be

θ̂I =
1

n

n∑

i=1

{δiYi + (1− δi)(X
>
i β̂n + ĝn(Ti))}.

We also consider two other estimators. First, the marginal average estimator

θ̂MA =
1

n

n∑

i=1

(X>
i β̂n + ĝn(Ti)),

which just averages over the estimated regression function. Second, the (marginal)

propensity score weighted estimator

θ̂P =
1

n

n∑

i=1

[
δiYi

P̂1(Ti)
+

(
1− δi

P̂1(Ti)

)
(X>

i β̂n + ĝn(Ti))

]
,

where P̂1(t) =
∑n

j=1 δjK
(

t−Tj

hn

)
/

n∑
j=1

K
(

t−Tj

hn

)
is an estimate of P1(t) = P (δ = 1|T =

t). Estimator θ̂P is different from the usual propensity score weighting method that

uses an estimator of the full propensity score.

We next state the properties of θ̂D, D = I, MA, P, and propose consistent vari-

ance estimators. Let P1(t) = P (δ = 1|T = t), P (x, t) = P (δ = 1|X = x, T = t),

m(x, t) = x>β + g(t), σ2(x, t) = E[(Y −X>β − g(T ))2|X = x, T = t], u(x, t) = x−
g1(t), Σ = E[P (X,T )u(X,T )u(X, T )>], and Ω = E[u(X, T )u(X, T )>σ2(X,T )P (X,T )].

Theorem 2.1. Under all the assumptions listed in the Appendix except for condition

(C.K)iii, we have [for D = I, MA, P ]

√
n(θ̂D − θ)

L−→ N(0, V ),
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where:

V = E

[
P (X,T )

P 2
1 (T )

σ2(X, T )

]
+ E[u(X, T )>]Σ−1ΩΣ−1E[u(X, T )] + var[m(X, T)].

To define a consistent estimator of V , we may first define estimators of P (x, t),

P1(t), σ2(x, t) and g1(t) by kernel regression method and then define a consistent

estimator of V by “plug in” method. However, this method may be difficult to

estimate V well when the dimension of X is high. This can be avoided because both

P (x, t) and σ2(x, t) only enter in the numerator and can be replaced by squared

residuals or the indicator function where appropriate. To obtain consistent variance

estimators we need the influence functions of the three estimators, which are

θ̂D − θ =
1

n

n∑

i=1

η(Yi, δi, Xi, Ti)+op(n
−1/2), D = I,MA and P

(see (A.4), (A.7) and (A.15)), where

η(Yi, δi, Xi, Ti) =

(
δi

P1(Ti)
+ E[(X − g1(T ))>]Σ−1δi(Xi − g1(Ti))

)
εi + m(Xi, Ti)

We replace the unknown quantities P1(Ti), β, g(Ti), g1(Ti), θ by estimators and take

V̂ =
1

n

n∑

i=1

η̂iη̂
>
i .

It should be pointed out that this method uses an estimator of the main term of the

asymptotic expansion of θ̂D − θ.

An alternative is the jackknife variance estimator. This is more computationally

demanding but imposes less conceptual demands on the practitioner. Let θ̂
(−i)
D be

θ̂D based on {(Yj, δj, Xj, Tj)}n
j=1−{(Yi, δi, Xi, Ti)} for i = 1, 2, . . . , n. Let Jni be the

jackknife pseudo-values. That is,

Jni = nθ̂D − (n− 1)θ̂
(−i)
D , i = 1, 2, · · · , n

Then, the jackknife variance estimator can be defined as:

V̂nJ =
1

n

n∑

i=1

(Jni − J̄n)2,

where J̄n = n−1 ∑n
i=1 Jni.
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Theorem 2.2. Under assumptions of Theorem 2.1, we have

V̂nJ
p−→ V.

By Theorem 2.1 and 2.2, the normal approximation based confidence interval

with confidence level 1 − α is θ̂ ±
√

V̂nJ

n
u1−α

2
, where u1−α

2
is the 1 − α

2
quantile of

standard normal distribution.

3 Discussion

3.1 Comparison of our methods

Note that θ̂P = θ̂MA + n−1 ∑n
i=1 δiε̂i/P̂1(Ti), θ̂I = θ̂MA + n−1 ∑n

i=1 δiε̂i, where ε̂i =

Yi −X>
i β̂n − ĝn(Ti), so that both θ̂I and θ̂P can be viewed as different adjustments

to the marginal average estimator. The asymptotic equivalence result in Theorem

2.1 is similar to that obtained in Cheng (1994, Theorem 2.1) between the marginal

average and the imputation estimator. It is interesting that the propensity score

weighting estimator also shares this distribution. The estimators may differ in their

higher order properties.

One computational advantage of the imputation estimator is that in case the

data are augmented with additional single Y observations, the extra values can be

directly included in the average of the observed Y ’s.

Suppose that the partially linear model assumption (1.2) is incorrect, and let

m∗(x, t) be the probability limit of x>β̂n + ĝn(t). Then the three estimators are

asymptotically biased with

p limn→∞ θ̂P = θ + E
[(

1− P (X,T )
P1(T )

)
(m∗(X, T )−m(X,T ))

]

p limn→∞ θ̂I = θ + E [(1− P (X, T )) (m∗(X, T )−m(X, T ))]

p limn→∞ θ̂MA = θ + E [(m∗(X, T )−m(X,T ))] .

(3.1)

There is no necessary ranking among the magnitudes of the biases, nor specific

predictions about their directions. However, when P (x, t) is close to 1 the bias of θ̂I

is likely to be smaller than the bias of θ̂MA, while when P (X,T ) does not vary much

about its conditional mean P1(T ), the bias of θ̂P is small. Especially, the asymptotic

bias of θ̂P is zero when m∗(x, t) = m(x, t) or P (x, t) = P1(t) by (3.1). This implies
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that θ̂P possesses the ‘double robustness’ property, namely that even if the mean

specification is incorrect, i.e., m(x, t) 6= β>x + g(t), θ̂P is still consistent provided

that P (X, T ) = P1(T ). This property has been discussed by Scharfstein, Rotnizky,

Robins (1999).

3.2 Comparison with methods for unrestricted regression

We now compare our method with three alternative fully nonparametric procedures:

the nonparametric kernel regression imputation estimator θ̃c due to Cheng (1996),

the estimator

θ̃HIR =
1

n

n∑

i=1

Yiδi

P̂ (Xi, Ti)

due to Hirano et al. (2000) based on an estimator P̂ (x, t) of the propensity score

constructed by kernel smoothing the participation indicator against covariate values,

and the weighted estimator

θ̃P =
1

n

n∑

i=1

Yiδi

P̂ (Xi, Ti)
+

1

n

n∑

i=1

(
1− δi

P̂ (Xi, Ti)

)
m̂n(Xi, Ti),

where m̂n(Xi, Ti) is the nonparametric regression kernel estimator of the regression

Y on (X, T ). The three nonparametric estimators are all asymptotically equivalent

with asymptotic variance

Vc = VHIR = VP = E

[
σ2(X,T )

P (X,T )

]
+ var[m(X, T)] ≡ VUR.

This is exactly the so-called semiparametric efficiency bound of Hahn (1998) for the

case where m(x, t) is unrestricted. Hence, all three nonparametric estimators are

asymptotically efficient in the sense of Hahn (1998). As we have pointed out already

when X, T are high dimensional a major disadvantage of θ̂c, θ̃HIR or θ̃W is that they

require a high-dimensional smoothing operation to compute the regressions of Y

or δ on X, T. Therefore, their actual distributions may be very different from that

predicted by the asymptotic theory due to the curse of dimensionality.

Now consider the cases where m(x, t) is restricted to the partially linear struc-

ture. The semiparametric efficiency bound here may be strictly lower than in the

unrestricted case. Therefore, the nonparametric estimators may not be asymptot-

ically efficient for the partially linear model. Our estimators all make use of the
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partial linear structure in the conditional mean and hence it is possible for them to

do better than the above three nonparametric estimators.

Do the estimators θ̂D, D = I, MA,P have less asymptotic variance than θ̂c, θ̃HIR

or θ̃W ? We next consider two special cases where the inequality V ≤ VUR holds.

First, suppose that P (X,T ) = P1(T ). Then, by noting Eu(X,T ) = 0, we have

V = E

[
σ2(X,T )

P (X, T )

]
+ var[m(X, T)] = VUR,

which is the same as the asymptotic variances of the three nonparametric estimators.

Second, consider the homoskedastic special case where σ2(x, t) = σ2, where σ is

a constant. In this case,

V = σ2E
[

1
P1(T )

]
+ σ2E[u(X, T )>]Σ−1E[u(X, T )] + var[m(X, T)]

VUR = σ2E
[

1
P (X,T )

]
+ var[m(X, T)].

We claim that

V ≤ VUR (3.2)

in this case. First note that

σ2E [u(X, T )] = σ2E

[(
δ

P (X,T )
− δ

P1(T )

)
δ (X − g1(T ))

]

= cov

((
δ

P(X, T)
− δ

P1(T)

)
ε, δ (X− g1(T)) ε

)

because E[δ (X − g1(T )) /P1(T )] = 0 and E[δ (X − g1(T )) /P (X,T )] = E[X −
g1(T )]. Furthermore,

σ2E[u(X, T )>](σ2Σ)−1σ2E[u(X, T )]

var
((

δ
P(X,T)

− δ
P1(T)

)
ε
) ≤ 1, (3.3)

because the left hand side can be interpreted as a squared correlation by the above

argument. Then note that

var

[(
δ

P(X, T)
− δ

P1(T)

)
ε

]
= σ2E

[
1

P(X, T)
− 1

P1(T)

]
. (3.4)

Combining (3.3) and (3.4) we have

σ2E[u(X,T )>]Σ−1E[u(X, T )] ≤ σ2E

[
1

P (X, T )
− 1

P1(T )

]
,
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i.e., V ≤ VUR as claimed in (3.2). Clearly, the equality holds only when (δ/P (X, T )−
δ/P1(T ))ε = aδ(X − g1(T ))ε + b, where both a and b are constants. This shows

that our estimator is asymptotically more efficient than the three nonparametric

estimators for the special case of homoskedasticity. This also supports the claim

that the semiparametric efficiency bound under the partially linear structure may

be strictly lower than in the unrestricted case.

We prove in Appendix B that V is the semiparametric efficiency bound for the

case that ε is i.i.d. Gaussian. This shows that the proposed estimators θ̂I , θ̂MA

and θ̂P are asymptotically efficient for the special case. Incidentally, β̂n is also

semiparametrically efficient.

We now comment on the general heteroskedastic case. In this case it is clear

that none of the estimators θ̂I , θ̂P , θ̂MA, θ̂c, θ̃HIR or θ̃W are efficient for the par-

tially linear model considered here. One reason for this is that in the presence of

heteroskedasticity, the Robinson type least squares estimator of β is inefficient; the

efficient estimator is a weighted least squares version of this where the weights are

some consistent estimate of σ−2(x, t), a high dimensional problem. We speculate

that the semiparametric efficiency bound for θ in our model is very complicated and

that, significantly, the efficient score function (Bickel, Klaassen, Ritov, and Well-

ner (1986)) would require estimation of the high dimensional regression functions

P (x, t) and σ2(x, t) as well as perhaps solving an integral equation. See inter alia:

Nan, Emond, and Wellner (2000), Rotnizky and Robins (1997), Scharfstein, Rot-

nizky, and Robins (1999), Robins, Hsieh, and Newey (1995), Robins, Rotnizky, and

Zhao (1994). Thus, we are left with the trade-off between the promise of large sam-

ple efficiency and the practical reality imposed by the curse of dimensionality, which

says that an enormous sample may be needed in order to achieve those gains. In

practical situations, it may be preferable to have an estimator that only depends on

one dimensional smoothing operations. This is certainly a view commonly expressed

in applied statistics, see for example Hastie and Tibshirani (1990) and Robins and

Ritov (1997). In addition, our estimators are very simple to compute and are ex-

plicitly defined.

There is another useful comparison with the literature on estimating additive
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nonparametric regression. The backfitting methodology of Hastie and Tibshirani

(1990) requires only iterative one dimensional smoothing operations and is very

popular and has good properties when the error is homoskedastic. When the error

is heteroskedastic in some general way, this method can be less efficient than some

competitors like the marginal integration estimator (Linton and Nielsen (1995)).

Nevertheless, whether it is desirable to pursue efficiency gains by weighting the

backfitting iterations is questionable if it requires high dimensional smoothing op-

erations.

3.3 Comparison with methods for Modelled Propensity Score

To consider the partial linear structure and improve the efficiency, one may define

an estimator θ̃∗P to be θ̃P with m̂(X, T ) replaced by X>β̂n + ĝn(T ). That is,

θ̃∗P =
1

n

n∑

i=1

Yiδi

P̂ (Xi, Ti)
+

1

n

n∑

i=1

(
1− δi

P̂ (Xi, Ti)

)
{Xiβ̂n + ĝn(Ti)}.

It can be shown that this estimator is asymptotically normal with the same asymp-

totic variance as the weighted nonparametric estimator θ̃P with m(X, T ) = X>β +

g(T ). This shows that θ̃∗P cannot be an asymptotic efficient estimator for the model

considered here. Also, θ̃∗P has the same disadvantages as θ̂HIR, requiring a high di-

mension smoothing technique to compute the propensity score when the propensity

score is unknown completely.

Suppose instead we replaced P̂ (Xi, Ti) by a semiparametric estimator, say one

based on fitting the semiparametric model

P (X,T ) = F (α>X + γ(T )),

where F is a known c.d.f., and the function γ(.) and parameters α are unknown.

If the model for the propensity score is correct, then we can expect some efficiency

gains depending on the model, at least in the homoskedastic case. Also, this method

does not require high dimension smoothing operations. However, the estimation

procedure to obtain α, γ(.) can be quite complicated - it usually involves nonlinear

optimization of a criterion function that contains nonparametric estimators. This

can be expected to be very time consuming and not perform statistically as well
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as is perhaps indicated by the asymptotic theory. This approach has the so-called

double robustness property whereby even if one of the two models [for the propensity

score or the mean] is incorrect, the estimator is still consistent. Note that our

estimator θ̂P also has the double robustness property: when either P (x, t) = P1(t)

or m(x, t) = β>x+g(t), then θ̂P is consistent. Also, it only requires one dimensional

smoothing operations.

4 Estimated, Adjusted and Bootstrap Empirical

Likelihood

In this section and the next we provide methods to conduct global inference on

θ using empirical likelihood and bootstrap empirical likelihood. Specifically, we

consider the problem of testing H0 : θ = θ0, where θ0 is a specific value. This sort

of application arises a lot in the program evaluation literature, see Hahn (1998).

The methods we develop are preferable to the naive confidence intervals developed

in section 2 as is well known from other contexts. We also show the advantages of

these refined methods in simulations below.

4.1 Estimated and adjusted empirical likelihood

Here, we derive an adjusted empirical likelihood (ADEL) method to develop global

inference for θ. Let Ỹi = δiYi + (1 − δi){X>
i β + g(Ti)}. We have EỸi = θ0 under

the MAR assumption if θ0 is the true value of θ. This implies that the problem of

testing H0 : θ = θ0 is equivalent to testing EỸi = θ0. If β and g(·) were known, then

one could test EỸi = 0 using the empirical likelihood of Owen (1990):

ln(θ) = −2 sup{
n∑

i=1

log(npi)|
n∑

i=1

piỸi = θ,
n∑

i=1

pi = 1, pi > 0, i = 1, 2, . . . , n}.

It follows from Owen (1990) that, under H0 : θ = θ0, ln(θ) has an asymptotic central

chi-square distribution with one degree of freedom. An essential condition for this

result to hold is that the Ỹ ′
i s in the linear constraint are i.i.d. random variables.

Unfortunately, β and g(·) are unknown, and hence ln(θ) cannot be used directly to

make inference on θ. To solve this problem, it is natural to consider an estimated
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empirical log-likelihood by replacing β and g(·) with their estimators. Specifically,

let Ŷin = δiYi + (1 − δi){X>
i β̂n + ĝn(Ti)}. An estimated empirical log-likelihood

evaluated at θ is then defined by

l̂n(θ) = −2 sup{
n∑

i=1

log(npi)|
n∑

i=1

piŶin = θ,
n∑

i=1

pi = 1, pi > 0, i = 1, 2, . . . , n}. (4.1)

By using the Lagrange multiplier method, when min1≤i≤n Ŷin < θ < max1≤i≤n Ŷin

with probability tending to one, l̂n(θ) can be shown to be

l̂n(θ) = 2
n∑

i=1

log(1 + λ(Ŷin − θ)), (4.2)

where λ is the solution of the equation

1

n

n∑

i=1

(Ŷin − θ)

1 + λ(Ŷin − θ)
= 0. (4.3)

Unlike the standard empirical log-likelihood ln(θ), l̂n(θ) is based on Ŷ ′
ins that

are not independent. Consequently, l̂n(θ) does not have an asymptotic standard

chi-square distribution. Actually, l̂n(θ) is asymptotically distributed as a scaled

chi-squared variable with one degree of freedom. Theorem 4.1 states the result.

Theorem 4.1. Assuming conditions of Theorem 2.1. Then, under H0 : θ = θ0,

l̂n(θ)
L−→ V

Ṽ
χ2

1,

where χ2
1 is a standard chi-square variable with one degree of freedom, V is defined

in Theorem 2.1 and Ṽ = E[P (X, T )σ2(X, T )] + V ar(X>β + g(T )).

By Theorem 4.1, we have under H0 : θ = θ0

γl̂n(θ)
L−→ χ2

1, (4.4)

where γ(θ) = Ṽ /V . If one can define a consistent estimator, say γn, for γ, an

adjusted empirical log-likelihood ratio is then defined as

l̂n,ad(θ) = γnl̂n(θ) (4.5)

with adjustment factor γn. It readily follows from (4.4) and (4.5), l̂n,ad(θ0)
L−→ χ2

1

under H0 : θ = θ0.
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A consistent estimator of γn can be defined as

γn =
Ṽn

V̂nJ

where V̂nJ is defined in Section 2 and

Ṽn =
1

n

n∑

i=1

(Ŷin − θ)2. (4.6)

Theorem 4.2. Assume the conditions in Theorem 2.1. Then, under H0 : θ = θ0

l̂n,ad(θ0)
L−→ χ2

1.

From Theorem 4.2, it follows immediately that an approximation 1−α confidence

region for θ is given by

{θ : l̂n,ad(θ) ≤ χ2
1,α}

where χ2
1,α is the upper α percentile of the χ2

1 distribution. Theorem 4.2 can also be

used to test the hypothesis H0 : θ = θ0. One could reject H0 at level α if

l̂n,ad(θ0) > χ2
1,α.

4.2 Partially Smoothed Bootstrap Empirical Likelihood

Next, we develop a bootstrap empirical likelihood method. Let {(X∗
i , T ∗

i , δ∗i , Y
∗
i ), 1 ≤

i ≤ m} be the bootstrap sample from {(Xj, Tj, δj, Yj), 1 ≤ j ≤ n}. Let Ŷ ∗
im be the

bootstrap analogy of {Ŷin}. Then, the bootstrap analogy of l̂n(θ) can be defined to

be

l̂∗m(θ̂n) = 2
m∑

i=1

log{1 + λ∗m(Ŷ ∗
im − θ̂n)},

where λ∗ satisfies

1

m

m∑

i=1

Ŷ ∗
im − θ̂n

1 + λ∗(Ŷ ∗
im − θ̂n)

= 0.
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To prove that the asymptotic distribution of l̂∗m(θ̂n) approximates to that of

l̂n(θ) with probability one, we need that T ∗
1 , . . . , T ∗

m have a probability density. This

motivates us to use smooth bootstrap. Let T ∗∗
i = T ∗

i + hnζi for i = 1, 2, . . . ,m,

where hn is the bandwidth sequence used in Section 2 and ζi, i = 1, 2, . . . , m are

independent and identically distributed random variables with common probability

density K(·), the kernel function in Section 2. We define l̂∗∗m (θ̂) to be l̂∗m(θ̂) with

T ∗
i replaced by T ∗∗

i for 1 ≤ i ≤ m. This method is termed as partially smoothed

bootstrap since it used smoothed bootstrap sample only partially.

Theorem 4.3. Assuming conditions of Theorem 2.1 and condition (C.K)iii. Then,

under H0 : θ = θ0, we have with probability one

sup
x
|P (l̂n(θ) ≤ x)− P ∗(l̂∗∗m (θ̂n) ≤ x)| → 0

as n →∞ and m →∞, where P ∗ denotes the bootstrap probability.

The bootstrap distribution of l̂∗∗m (θ̂n) can be calculated by simulation. The re-

sult of Theorem 4.3 can then be used to construct a bootstrap empirical likelihood

confidence interval for θ. Let c∗α be the 1− α quantile of the distribution of l̂∗∗m (θ̂n).

We can define a bootstrap empirical log-likelihood confidence region to be

{θ : l̂n(θ) ≤ c∗α}.

By Theorem 4.3, the bootstrap empirical likelihood confidence interval has asymp-

totically correct coverage probability 1− α.

Compared to the estimated empirical likelihood and the adjusted empirical likeli-

hood, an advantage of the bootstrap empirical likelihood is that it avoids estimating

the unknown adjusting factor. This is especially attractive in some cases when the

adjustment factor is difficult to estimate efficiently.

5 Simulation Results

We conducted a simulation to analyze the finite-sample performances of the pro-

posed estimators θ̂I , θ̂MA and θ̂P and the weighted estimator θ̃∗P given in Section 3,

and compare the two empirical likelihood methods, namely the adjusted empirical
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likelihood and the partly smoothed bootstrap empirical likelihood, with the normal

approximation-based method in terms of coverage accuracies of confidence intervals.

The simulation used the partial linear model Y = X>β + g(T ) + ε with X

and T simulated from the normal distribution with mean 1 and variance 1 and the

uniform distribution U [0, 1] respectively, and ε generated from the standard normal

distribution, where β = 1.5, g(t) = 3.2t2 − 1 if t ∈ [0, 1], g(t) = 0 otherwise. The

kernel function was taken to be

K(t) =

{
15
16

(1− 2t2 + t4), −1 ≤ t ≤ 1
0, otherwise

and the bandwidth hn was taken to be n−2/3.

We generated 5000 Monte Carlo random samples of size n = 30, 60 and 100

based on the following three cases respectively:

Case 1: P (δ = 1|X = x, T = t) = 0.8+0.2(|x−1|+|t−0.5|) if |x−1|+|t−0.5| ≤ 1,

and 0.95 elsewhere;

Case 2: P (δ = 1|X = x, T = t) = 0.9−0.2(|x−1|+|t−0.5|) if |x−1|+|t−0.5| ≤ 4,

and 0.1 elsewhere;

Case 3: P (δ = 1|X = x, T = t) = 0.6 for all x and t.

The average missing rates corresponding to the above three cases are approxi-

mately 0.10, 0.25 and 0.40 respectively. Let θ̃∗P,1 be θ̃∗P with P̂ (x, t) taken to be the

nonparametric kernel estimator given by

P̂ (x, t) =

n∑
i=1

δiK1

(
x−Xi

h1,n

)
K2

(
t−Ti

h2,n

)

n∑
i=1

K1

(
x−Xi

h1,n

)
K2

(
t−Ti

h2,n

)

where K1(u) = −15
8
u2 + 9

8
if |u| ≤ 1, 0 otherwise; K2(v) = 15

16
(1− 2t2 + t4) if |v| ≤ 1,

0 otherwise and h1,n = h2,n = n−
1
3 . Let θ̃∗P,2 be θ̃∗P with

P̂ (x, t) = 0.8 + 0.2(|x− X̄|+ |t− T̄ | if |x− X̄|+ |t− T̄ | ≤ 1, and 0.95 elsewhere

for case 1;

P̂ (x, t) = 0.9− 0.2(|x− X̄|+ |t− T̄ | if |x− X̄|+ |t− T̄ | ≤ 4, and 0.1 elsewhere

for case 2 and

P̂ (x, t) = 0.6
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for case 3, respectively, where X̄ = n−1 ∑n
i=1 Xi and T̄ = n−1 ∑n

i=1 Ti.

For nominal confidence level 1−α = 0.95, using the simulated samples, we calcu-

lated the coverage probabilities and the average lengths of the confidence intervals,

which are reported in Table 5.1. From the 5000 simulated values of θ̂I , θ̂MA, θ̂P , θ̂∗P,1

and θ̂∗P,2, we calculated the biases and standard errors of the five estimators. These

simulated results are reported in Tables 5.2 and 5.3.

For convenience, in what follows AEL represents the adjusted empirical likelihood

confidence interval given in subsection 4.1. BEL denotes the smoothed bootstrap

empirical likelihood confidence intervals given in subsections 4.2. NA denotes the

normal approximation based confidence intervals given in Section 2 based on θ̂I .

Insert Table 5.1 here

From Table 5.1, we observe the following:

(1) BEL does perform competitively in comparison to AEL and NA since BEL

has generally higher coverage accuracies but only slightly bigger average lengths.

NA has higher slightly coverage accuracy than AEL. But. it does this using much

longer intervals. This implies that AEL might be preferred over NA.

(2) BEL has generally higher coverage accuracy, but bigger slightly average

length than AEL and NA as n = 60 and 100. This suggests, for n = 60 and

100, BEL performs relatively better. For n = 30, AEL might be preferred since it

has much smaller average length and the coverage accuracy is also not so low.

(3) All the coverage accuracies increase and the average lengths decrease as n

increases for every fixed missing rate. Clearly, the missing rate also affects the

coverage accuracy and average length. Generally, the coverage accuracy decreases

and average length increases as the missing rate increases for every fixed sample

size.

Insert Tables 5.2 and 5.3 here

From Tables 5.2 and 5.3, we observe:
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(a) Biases and SE decrease as n increases for every fixed censoring rate. Also,

SE increases as the missing rate increases for every fix sample size n.

(b) θ̂I , θ̂MA, θ̂P and θ̃∗P,2 have smaller SE than θ̃∗P,1. Generally, θ̃∗P,1 also has

slightly bigger bias than other estimators. This suggests that our estimators and

θ̃∗P,2 outperform θ̃∗P,1, a propensity score weighted estimator that uses the nonpara-

metric kernel estimator of the full propensity score. From the simulation results, the

weighted estimator θ̃∗P indeed performs well if the propensity score can be specified

correctly.

6 Real Data Analysis

We considered the real data set given in Peixoto (1990). The data gives the normal

average January minimum temperature in degrees Fahrenheit (JanTemp) with the

latitude (Lat) and longitude (Long) of 56 U.S. cities. (For each year from 1931 to

1960, the daily minimum temperatures in January were added together and divided

by 31. Then, the averages for each year were averaged over the 30 years). The data

set is also available on http://lib.stat.cmu.edu/DASL/Datafiles/USTemperatures.html.

Peixoto (1990) reports a study in which a linear relationship is assumed between

JanTemp and Lat; then, after removing the effects of Lat, a cubic polynomial in

Long is used to predict JanTemp. To apply the real data to our problem, we

denote the variables for JanTemp, Lat and the natural lagarithm of Long to be Y, X

and T respectively. We suppose that Y, X and T satisfy the partial linear model

considered here. Figure 6.1 plots the estimated curve gn(t) of g(t) based on the

complete observations (X, T, Y ), where gn(t) is ĝn(t), which is defined in Section 2,

with δi replaced by 1 for i = 1, 2, · · · , n, and the kernel function K(·) taken to be

the same as in Section 5 and the bandwidth hn taken to be n−
1
3 .

Insert Figure 6.1 here

We used this data and deleted 13 Y values given in parentheses in Table 6.1.

The deletion mechanism is designed to be MAR with P (x, t) = 0.75.
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Insert Table 6.1 here

Based on the incomplete data set, we may develop inference on the mean of

Y with the methods given before. It is noted that the original data set given by

Peixoto (1990) is complete. Inference on the mean of Y with the complete data

set doesn’t depend on the model assumption and covariables X and T . This just

provides us a standard to compare our methods with other methods to handle miss-

ing data. For example, we may compare our semiparametric regression imputation

estimator θ̂I with the nonparametric kernel regression imputation estimator θ̃c due

to Cheng (1994) by comparing them with the sample mean Ȳ = 1
n

∑n
i=1 Yi, and com-

pare the empirical likelihood method based on the semiparametric imputation with

that based on the nonparametric imputation by comparing them with the standard

empirical likelihood based on the complete observations Y .

We calculated Ȳ = 26.5179 with the complete observations Y , and the estimated

values θ̂I = 26.3131 and θ̃c = 24.4046, respectively, based on the incomplete data

set which are obtained by deleting some Y values with MAR deletion mechanism.

When calculating θ̂I , the kernel function K(t) and the bandwidth hn were taken to

be the same as in Section 5. For calculation of θ̃c, m̂n(x, t) was taken to be

m̂n(x, t) =

n∑
i=1

δiYiK1

(
x−Xi

h1,n

)
K2

(
t−Ti

h2,n

)

n∑
i=1

δiK1

(
x−Xi

h1,n

)
K2

(
t−Ti

h2,n

)

where K1(·), K2(·), h1,n and h2,n are the same as in Section 5. The value for sample

variance estimate of Ȳ is 3.1397, and jackknife variances for estimators θ̂I and θ̃c

are 4.3607 and 4.4478 respectively

From the estimated values, θ̂I is closer to the sample mean Ȳ than θ̃c. It is also

clear θ̂I has smaller jackknife variance estimate than θ̃c.

With the jackknife variance estimators, we calculated the normal aproximation

confidence intervals of θ with confidence level 0.95 based on the asymptotic nor-

mality of Ȳ , θ̂I and θ̃c. The confidence intervals calculated are (23.0449, 29.9908),

(22.2202, 30.4060) and (20.2710, 28.5382), respectively. Their lengths are 6.9459,

8.1858 and 8.2672 respectively. Clearly, the confidence intervals based on θ̂I are

closer to that based on the complete sample mean Ȳ and have shorter lengths.
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All in all, the calculation results show that the semiparametric imputation es-

timator performs better than the nonparametric imputation estimator for the real

data example in terms of biases of the two estimators and the lengths of confidence

intervals.

Next, we compare the semiparametric imputed empirical likelihood and the non-

parametric imputed empirical likelihood with the standard empirical likelihood with

complete observations due to Owen (1988). The standard empirical log-likelihood

function, ln,S(θ) is defined by (4.2) and (4.3) with Ŷin replaced by Yi and the non-

parametric imputed empirical log-likelihood function l̂n,c(θ) is defined by (4.2) and

(4.3) with Ŷin replaced by Yin = δiYi + (1− δi)m̂n(Xi, Ti) for i = 1, 2, · · · , n.

Figure 6.2 plots the curves for the standard empirical log-likelihood function

ln,S(θ), semiparametric imputed empirical log-likelihood function l̂n(θ) and non-

parametric empirical log-likelihood function l̂n,c(θ). Figure 6.3 plots the curves for

ln,S(θ), l̂n,ad(θ) and the adjusted empirical log-likelihood functon of l̂n,c(θ) given by

l̂nc,ad(θ) = γn,c(θ)l̂n,c(θ),

where γn,c(θ) = Vn,c(θ)/Vn,cJ with Vn,cJ the jackknife variance estimator of θ̃c and

Vn,c(θ) = n−1
n∑

i=1
(Yin − θ)2.

Insert Figures 6.2 and 6.3 here

From Figures 6.2 and 6.3, the curves for l̂n(θ) and its adjusted version l̂n,ad(θ)

are closer to the standard empirical log-likelihood function ln,S(θ) than l̂n,c(θ) and

l̂ac,ad(θ) respectively. The curves l̂n,c(θ) and its adjusted version shift to the left

of l̂n(θ). This implies that the nonparametric empirical likelihood method may

construct confidence interval with lower coverage than the semiparametric imputed

empirical likelihood method. It was calculated that the confidence intervals based

on ln,S(θ), l̂n,ad(θ) and l̂nc,ad(θ) with confidence level 0.95 are {θ : ln,S(θ) ≤ 3.8415} =

(23.1500, 30.2500), {θ : l̂n,ad(θ) ≤ 3.8415} = (22.4000, 30.3500) and {θ : l̂nc,ad(θ) ≤
3.8415} = (20.6000, 28.6500), where 3.8415 is 0.95 quantile of standard chi-square
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with one degree of freedom. The lengths for these confidence intervals are 7.1000,

7.9500 and 8.0500 respectively. It is observed that the confidence intervals based on

the semiparametric regression imputation are closer to that based on the complete

sample mean Ȳ and have shorter lengths. This also can be seen from Figure 6.3.

Appendix A: Assumptions and Proofs of Theorems

Denote by g1r(·) the rth component of g1(·). Let ‖ · ‖ be the Euclid norm. The

following assumptions are needed for the asymptotic normality of θ̂n.

(C.X): supt E[‖X‖2|T = t] < ∞,

(C.T): The density of T , say r(t), exists and satisfies

0 < inf
t∈[0,1]

r(t) ≤ sup
t∈[0,1]

r(t) < ∞.

(C.Y): supx,t E[Y 2|X = x, T = t] < ∞.

(C.g): g(·), g1r(·) and g2(·) satisfy Lipschitz condition of order 1.

(C.P1): i: P1(t) has bounded partial derivatives up to order 2 almost surely.

ii: infx,t P (x, t) > 0.

(C.Σ) Σ = E[P (X, T )u(X,T )u(X,T )>] is a positive definite matrix.

(C.K)i: There exist constant M1 > 0,M2 > 0 and ρ > 0 such that

M1I[|u| ≤ ρ] ≤ K(u) ≤ M2I[|u| ≤ ρ].

ii: K(·) is a kernel function of order 2.

iii: K(·) has bounded partial derivatives up to order 2 almost surely.

(C.hn): nhn →∞ and nh2
n → 0.

REMARK: Condition (C.T) implies that T is a bounded random variable on

[0, 1]. (C.K)i implies that K(·) is a bounded kernel function with bounded support.

Proof of Theorem 2.1. (i) We prove Theorem 2.1 for θ̂I . For θ̂I , we have

θ̂I = 1
n

n∑
i=1
{δiYi + (1− δi)(X

>
i β + g(Ti))}

+ 1
n

n∑
i=1

(1− δi)X
>
i (β̂n − β) + 1

n

n∑
i=1

(1− δi)(ĝn(Ti)− g(Ti)).
(A.1)

Note that

β̂n − β = Σ−1 1

n

n∑

i=1

δi [Xi − g1(Ti)] εi + op(n
−1/2). (A.2)
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1

n

n∑

i=1

(1−δi)(ĝn(Ti)−g(Ti)) =
1

n

n∑

j=1

δjεj
(1− P1(Tj))

P1(Tj)
− 1

n

n∑

j=1

(1−δj)g1(Tj)(β̂n−β)+op(n
−1/2)

(A.3)

By (A.1), (A.2) and (A.3), we get

θ̂I − θ = 1
n

∑n
i=1

(
δi

P1(Ti)
+ E[u(X, T )>]Σ−1δi(Xi − g1(Ti))

)
εi

+ 1
n

∑n
i=1(X

>
i β + g(Ti)− θ) + op(n

−1/2),
(A.4)

By (A.4) and the central limit theorem, θ̂I has the stated asymptotic normality.

(ii) We prove Theorem 2.1 for θ̂MA. For θ̂MA, we have

θ̂MA−θ =
1

n

n∑

i=1

(X>
i β+g(Ti))−θ+E(X)>(β̂n−β)+

1

n

n∑

i=1

(ĝn(Ti)−g(Ti))+op(n
−1/2),

(A.5)

where

1
n

n∑
i=1

(ĝn(Ti)− g(Ti)) = 1
n

n∑
i=1

∑n
j=1 δjWnj(Ti)εj − 1

n

n∑
i=1

∑n
j=1 δjWnj(Ti)X

>
j (β̂n − β) + op(n

−1/2)

= 1
n

n∑
i=1

εi
δi

P1(Ti)
− E[g1(Ti)

>](β̂n − β)+op(n
−1/2).

(A.6)

Therefore, (A.2), (A.5) and (A.6) together prove

θ̂MA − θ = 1
n

n∑
i=1

εi
δi

P1(Ti)
+ E(u(X, T ))>Σ−1 1

n

n∑
i=1

δi [Xi − g1(Ti)] εi

+ 1
n

n∑
i=1

(X>
i β + g(Ti)− θ)+op(n

−1/2).
(A.7)

This together with central limit theorem proves Theorem 2.1 for θ̂MA.

(iii) We prove Theorem 2.1 for θ̂P . For θ̂P , we have

θ̂P = θ + 1
n

n∑
i=1

δiεi

P1(Ti)

+ 1
n

n∑
i=1

δiεi{P̂1(Ti)−P1(Ti)}
P 2

1 (Ti)
+ 1

n

n∑
i=1

(X>
i β + g(Ti)− θ)

+ 1
n

n∑
i=1

(
1− δi

P1(Ti)

)
X>

i (β̂n − β)

+ 1
n

n∑
i=1

(
1− δi

P1(Ti)

)
(ĝn(Ti)− g(Ti)) + op(n

−1/2)

= θ + Tn1 + Tn2 + Tn3 + Tn4 + Tn5 + op(n
−1/2).

(A.8)
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For Tn5, we have

Tn5 = 1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δjWnj(Ti)εj

− 1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δjWnj(Ti)g1(Tj)
>(β̂n − β)

= 1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δj
1

nh

K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
εj

− 1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δj
1

nh

K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
g1(Tj)

>(β̂n − β) + op(n
− 1

2 )

(A.9)

Note thatE
[
1− δi

P1(Ti)
|Ti

]
= 0. We have

1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δj
1

nh

K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
εj

= 1
n

n∑
j=1

δjεj
1

nh

n∑
i=1

(
1− δi

P1(Ti)

) K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
= op(n

−1/2)

(A.10)

and

1
n

n∑
i=1

(
1− δi

P1(Ti)

) n∑
j=1

δj
1

nh

K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
g1(Tj)

>

= 1
n

n∑
j=1

δjg1(Tj)
> 1

nh

n∑
i=1

(
1− δi

P1(Ti)

) K

(
Ti−Tj

hn

)

P1(Ti)fT (Ti)
= op(1)

(A.11)

(A.9), (A.10) and (A.11) together with the fact that β̂n − β = Op(n
− 1

2 ) prove

Tn5 = op(n
− 1

2 ). (A.12)

Furthermore,

E

[(
1− δi

P1(Ti)

)
Xi

]
= E [(X − g1(T ))]

so that the term

Tn4 =
1

n

n∑

i=1

(
1− δi

P1(Ti)

)
X>

i (β̂n − β) = E
[
(X − g1(T ))>

]
(β̂n − β) + op(n

−1/2).

(A.13)

For Tn2, we have

Tn2 = 1
n

n∑
i=1

δiεi{P̂1(Ti)−P1(Ti)}
P 2

1 (Ti)

= 1
n

n∑
i=1

δiεi

P 2
1 (Ti)

1
nh

∑n
j=1 K

(
Ti−Tj

hn

)
[δj−P1(Tj)]

fT (Ti)
+ op(n

− 1
2 )

= 1
n

∑n
j=1 [δj − P1(Tj)]

1
nh

n∑
i=1

δiεi

P 2
1 (Ti)

K
(

Ti−Tj

hn

)
1

fT (Ti)
+ op(n

− 1
2 )

= op(n
−1/2).

(A.14)
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(A.8), (A.12),(A.13) and (A.14) together prove

θ̂P − θ = 1
n

n∑
i=1

δiεi

P1(Ti)
+ 1

n

n∑
i=1

X>
i β + g(Ti)− θ

+E [(X − g1(T ))]> Σ−1 1
n

n∑
i=1

δi [Xi − g1(Ti)] εi + op(n
−1/2).

(A.15)

This together with central limit theorem proves Theorem 2.1 for θ̂P .

Proof of Theorem 2.2. Similar to (A.4),(A.8) and (A.15), we can get

V̂nJ =
1

n

n∑

i=1

(η(Yi, δi, Xi, Ti)− 1

n

n∑

i=1

η(Yi, δi, Xi, Ti))
2 + op(1).

where η(Y, δ,X, T ) is defined in Section 2. This proves V̂nJ
p→ V (θ).

Proofs of Theorem 4.1 and 4.2. It can be proved that min1≤i≤n Ŷin < θ <

max1≤i≤n Ŷin with probability tending to 1 when n → ∞. Hence, by Lagrange

multiplier method, (4.2) and (4.3) are then obtained from (4.1). Applying Taylor’s

expansion to (4,2), we get

l̂n(θ) = 2
n∑

i=1

{λn(Ŷin − θ)− 1

2
[λn(Ŷin − θ)]2}+ op(1) (A.16)

by the facts that Ŷ(n) = op(n
1
2 ) and λn = Op(n

− 1
2 ).

By (4.3), we get

0 =
n∑

i=1

(Ŷin − θ)

1 + λn(Ŷin − θ)
=

n∑

i=1

[(Ŷin − θ)]−
n∑

i=1

λn(Ŷin − θ)2 +
n∑

i=1

λ2
n(Ŷin − θ)3

1 + λn(Ŷin − θ)
.

This implies
n∑

i=1

λn(Ŷin − θ) =
n∑

i=1

[λn(Ŷin − θ)]2 + op(1) (A.17)

and

λn =

(
n∑

i=1

(Ŷin − θ)2

)−1 n∑

i=1

(Ŷin − θ) + op(n
− 1

2 ). (A.18)

using Ŷ(n) = op(n
1
2 ) and λn = Op(n

− 1
2 ).

(A.16), (A.17) and (A.18) together yield

l̂n(θ) = Ṽ −1
n

[
1√
n

n∑

i=1

(Ŷin − θ)

]2

+ op(1). (A.19)

It can be proved Ṽn
p→ Ṽ , where Ṽn and Ṽ are defined in Section 4. This together

with (A.19) and Theorem 2.1 proves Theorem 4.1.
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Recalling the definition of l̂n,ad(θ), by (A.19) we get

l̂n,ad(θ) =


 1√

n

n∑

i=1

Ŷin − θ√
V̂nJ




2

+ op(1). (A.20)

This together with and Theorem 2.2 proves Theorem 4.2.

Proof of Theorem 4.3 Under assumptions (C.X), (C.T), (C.Y), (C.P1), (C.Σ)

and (C.K)iii, standard arguments can be used to prove with probability 1: (i)

supt E
∗[‖X∗‖2|T ∗∗ = t] < ∞; (ii) 0 < inft∈[0,1] rn(t) ≤ supt∈[0,1] rn(t) < ∞; (iii)

supx,t E
∗[Y ∗|X∗ = x, T ∗∗ = t] < ∞; (iv) infx,t P

∗(δ∗ = 1|X∗ = x, T ∗∗ = t] > 0;

(v) Σ∗ = E∗[P (X∗, T ∗∗)u(X∗, T ∗)u(X∗, T ∗)>] is a positive definite matrix; (vi)

P ∗
1 (t) = P ∗(δ∗ = 1|T ∗∗ = t) has bounded partial derivatives up to order 2 almost

surely. By (i)–(vi), conditions (C.g), (C.K)i,ii and (C.hn) and similar arguments to

those used in the proof of Theorem 4.1, we can prove that along almost all sample

sequences, given (Xi, Ti, Yi, δi) for 1 ≤ i ≤ n, as m and n go to infinitey l̂∗m(θ̂n)

has the same asymptotic scaled chi-square distribution as l̂n(θ). This together with

Theorem 4.1 proves Theorem 4.3.

Appendix B: Derivation of Efficiency Bound

We follow the approach of Bickel, Klaassen, Ritov, and Wellner (1993, section

3.3), as applied by Hahn (1998). The log density of (Y, δ,X, T ) is

log fβ,g,fε,P,fX,T
(Y, δ,X, T ) = δ log fε(Y − βX − g(T )|X, T ) + δ log P (X,T )

+(1− δ) log(1− P (X, T )) + log fX,T (X,T ),

where fε(e|X,T ) denotes the conditional density of ε given X, T, and fX,T is the

covariate density. Let Q denote the semiparametric model. Now consider any regular

parametric submodel Qλ with ε ∼ N(0, σ2) and parameters λ = (β, γ, σ2, ηp, ηxt),

such that the log density log fβ,g,σ2,P,fX,T
(Y, δ,X, T ; λ), which we denote by `sub is

δ
−1

2σ2
(Y − βX − gγ(T ))2 + δ

−1

2
log σ2 + δ log P (X,T ; ηp)

+(1− δ) log(1− P (X,T ; ηp)) + log fX,T (X, T ; ηxt),
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which equals log fβ,g,fε,P,fX,T
(Y, δ,X, T ) when λ = λ0. The score functions are:

∂`sub

∂β
= −δ

1

σ2
Xε

∂`sub

∂γ
= −δ

1

σ2

∂gγ

∂γ
(T )ε

∂`sub

∂σ2
= −δ

1

2σ2

(
ε2

σ2
− 1

)

∂`sub

∂ηp

=
δ − P (X,T )

P (X,T )(1− P (X,T ))

∂P

∂ηp

(X, T )

∂`sub

∂ηxt

=
∂ffX,T

(X, T )/∂ηxt

ffX,T
(X, T )

,

where ε = Y − βX − gγ(T ). The semiparametric model is the union of all such

parametric models, and so the tangent space of Q, denoted T , is generated by the

functions
{

δXε, δγ(T )ε, δ

(
ε2

σ2
− 1

)
, a(X,T )(δ − P (X,T )), b(X,T )

}
,

where: Eε = 0, Eε2 = σ2, and Eb(X,T ) = 0, while a(X, T ) is any square integrable

measurable function of X,T.

We first consider what is the efficiency bound for estimation of β in the semipara-

metric model. We follow Bickel et al. (1993, section 2.4) and find the efficient score

function for β in the presence of the nuisance functions P, fX,T , g, and parameter

σ2. The efficient score function for estimation of β has to be orthogonal to all of

the other score functions and in particular orthogonal to any function of the form

δγ(T )ε [which is a candidate score function for the parameters of g]. The efficient

score function for β in the semiparametric model is

`∗β = δ[X − g1(T )]ε,

as can be immediately verified. The corresponding semiparametric efficiency bound

is

I∗−1
ββ = σ2E−1

{
δ[X − g1(T )][X − g1(T )]>

}
,

and no regular estimator can have asymptotic variance less than this. Under these

conditions, our estimator β̂n achieves this bound.
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We now turn to the efficiency bound for the parameter λ. We first show pathwise

differentiability of the parameter θ. For the parametric submodel the parameter of

interest is

θ =
∫

Y fε(Y − βX − gγ(T )|X,T ; σ2)fX,T (X, T ; ηxt)dY dXdT,

which has derivatives

∂θ

∂β
= −

∫
Y Xf ′ε(Y − βX − gγ(T )|X,T ; σ2)fX,T (X, T ; ηxt)dY dXdT

= −
∫

εX
f ′ε(ε|X,T )

fε(ε|X, T )
fX,T (X, T )fε(ε|X,T )dεdXdT

= − 1

σ2
E

[
Xε2

]
= −E [X]

∂θ

∂γ
= −

∫
Y

∂gγ

∂γ
(T )

f ′ε(ε|X,T )

fε(ε|X, T )
fX,T (X, T )fε(ε|X,T )dεdXdT

= −E

[
∂gγ

∂γ
(T )

]

∂θ

∂σ2
=

∫
Y

∂ log fY (Y |X, T )

∂σ2
fX,T (X, T )fY (Y |X, T )dY dXdT

= −E

[
Y

1

2σ2

(
ε2

σ2
− 1

)]
= 0

∂θ

∂ηxt

=
∫

Y fY (Y |X,T )
∂fX,T (X,T )/∂ηxt

fX,T (X, T )
fX,T (X,T )dY dXdT

= E

[
m(X, T )

∂fX,T (X, T )/∂ηxt

fX,T (X, T )

]

Define

Fθ =
δε

P (X, T )
+ m(X, T )− θ.

Then it can be seen that

E [Fθsλ] =
∂θ

∂λ

for parameters λ, where sλ is the corresponding element of T . Therefore, θ is a

differentiable parameter.
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To find the variance bound we must find the mean square projection of Fθ onto

the tangent space T . In view of the above arguments, T is equivalently generated

from the functions δ[X−g1(T )]ε, δγ(T )ε, . . . . Furthermore, we can effectively ignore

the second term m(X,T ) − θ in Fθ, since this is already in T . Without loss of

generality we find κ to minimize the variance of
{

δ

P (X, T )
− δ

P1(T )
− κδ(X − g1(T ))

}
ε.

The solution is

κ =
E [X − g1(T )]

E
[
δ (X − g1(T ))2

]

because {
δ

P (X,T )
− δ

P1(T )
− κδ(X − g1(T ))

}
ε

is then orthogonal to any function in T as can easily be verified. Therefore, the

efficient influence function is
{

δ

P1(T )
+ κδ(X − g1(T ))

}
ε + m(X,T )− θ,

which is the influence function of our estimators θ̂I , θ̂MA and θ̂P . This shows that our

estimators are asymptotically efficient for the special case where ε is i.i.d. Gaussian.
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Table 5.1. Empirical coverages and average lengths of the confidence intervals on θ
under different missing functions P (x) and sample sizes n when nominal level is

0.95

Empirical Coverages Average Lengths

P (x) n AEL BEL NA AEL BEL NA

30 .9200 .9750 .9220 0.8700 1.1400 1.1734
P1(x) 60 .9240 .9620 .9280 0.6900 0.7900 0.8539

100 .9450 .9580 .9440 0.5400 0.6000 0.6691

30 .9160 .9770 .9190 0.9900 1.4500 1.3599
P2(x) 60 .9220 .9640 .9250 0.7700 0.9500 0.9460

100 .9430 .9590 .9450 0.6000 0.7300 0.7290

30 .9140 .9820 .9170 1.1200 1.5100 1.4587
P3(x) 60 .9210 .9690 .9230 0.7800 1.0500 0.9983

100 .9390 .9580 .9390 0.6200 0.7600 0.7664

Table 5.2. Biases of θ̂I , θ̂MA, θ̂P , θ̃∗P,1 and θ̃∗P,2 under different missing functions
P (x) and different sample sizes n

P (x) n θ̂I θ̂MA θ̂P θ̃∗P,1 θ̃∗P,2

30 -0.0089 -0.0098 -0.0089 -0.0088 -0.0091
P1(x) 60 0.0008 0.0003 0.0007 0.0027 0.0008

100 0.0003 0.0001 0.0004 -0.0031 0.0003

30 -0.0038 -0.0039 -0.0037 -0.0047 -0.0033
P2(x) 60 -0.0017 -0.0022 -0.0013 -0.0034 -0.0011

100 0.0013 0.0008 0.0016 0.0007 0.0015

30 -0.0056 -0.0059 -0.0057 -0.0055 -0.0054
P3(x) 60 0.0049 0.0049 0.0050 0.0066 0.0049

100 0.0045 0.0043 0.0044 0.0060 0.0047
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Table 5.3. Standard errors (SE) of θ̂I , θ̂MA, θ̂P , θ̃∗P,1 and θ̃∗P,2 under different
missing functions P (x) and different sample sizes n

P (x) n θ̂I θ̂MA θ̂P θ̃∗P,1 θ̃∗P,2

30 0.3144 0.3146 0.3145 0.3361 0.3145
P1(x) 60 0.2233 0.2232 0.2236 0.2456 0.2234

100 0.1745 0.1748 0.1747 0.2189 0.1744

30 0.3459 0.3458 0.3480 0.3604 0.3476
P2(x) 60 0.2402 0.2401 0.2415 0.2780 0.2410

100 0.1887 0.1886 0.1899 0.2544 0.1902

30 0.3610 0.3608 0.3632 0.3787 0.3613
P3(x) 60 0.2526 0.2549 0.2522 0.2910 0.2530

100 0.1985 0.1983 0.2000 0.2386 0.1988

Table 6.1.The normal average January minimum temperature in degrees Fahrenheit with
the latitude and longitude of 56 U.S. cities.

X 31.2 32.9 33.6 35.4 34.3 38.4 40.7 41.7 40.5 39.7 31.0 25.0 26.3 33.9
T 4.48 4.46 4.72 4.53 4.78 4.81 4.66 4.30 4.33 4.35 4.41 4.41 4.39 4.44
Y 44 38 (35) 31 47 42 15 22 26 30 45 65 58 37
δ 1 1 0 1 1 1 1 1 1 1 1 1 1 1
X 43.7 42.3 39.8 41.8 38.1 39.0 30.8 44.2 39.7 42.7 43.1 45.9 39.3 47.1
T 4.76 4.48 4.47 4.54 4.58 4.46 4.50 4.26 4.35 4.27 4.43 4.54 4.51 4.72
Y 22 (19) 21 11 (22) 27 45 12 25 23 (21) 2 24 8
δ 1 0 1 1 0 1 1 1 1 1 0 1 1 1
X 41.9 43.5 39.8 35.1 42.6 40.8 35.9 36.4 47.1 39.2 42.3 35.9 45.6 40.9
T 4.57 4.28 4.32 4.67 4.30 4.31 4.40 4.37 4.62 4.44 4.41 4.58 4.81 4.35
Y 13 (11) 27 24 14 27 34 (31) (0) (26) (21) ( 28) 33 24
δ 1 0 1 1 1 1 1 0 0 0 0 0 1 1
X 40.9 33.3 36.7 35.6 29.4 30.1 41.1 45.0 37.0 48.1 48.1 43.4 43.3 41.2
T 4.32 4.39 4.47 4.62 4.56 4.56 4.72 4.30 4.34 4.81 4.77 4.50 4.48 4.65
Y 24 38 31 24 (49) 44 18 7 32 33 (19) 9 13 (14)
δ 1 1 1 1 0 1 1 1 1 1 0 1 1 0
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Figure 6.1. Curve for gn(t)
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Figure 6.2. Curves for standard empirical log-likelihood (ELL) function with complete
observations Y , semiparametric imputed ELL and nonparametric imputed ELL functions
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Figure 6.3. Curves for standard empirical log-likelihood (ELL) function with complete
observations Y , semiparametric adjusted ELL and nonparametric adjusted ELL functions
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