Cookies?
Library Header Image
LSE Research Online LSE Library Services

Considering a classical upper bound on the Frobenius number

Williams, Aled ORCID: 0000-0001-7695-946X and Haijima, Daiki (2024) Considering a classical upper bound on the Frobenius number. Mathematics, 12 (24). ISSN 2227-7390

[img] Text (mathematics-12-04029-v2) - Published Version
Available under License Creative Commons Attribution.

Download (7MB)

Identification Number: 10.3390/math12244029

Abstract

In this paper, we study the (classical) Frobenius problem, namely the problem of finding the largest integer that cannot be represented as a nonnegative integer combination of given, relatively prime, (strictly) positive integers (known as the Frobenius number). The main contribution of this paper are observations regarding a previously known upper bound on the Frobenius number where, in particular, we observe that a previously presented argument features a subtle error, which alters the value of the upper bound. Despite this, we demonstrate that the subtle error does not impact upon on the validity of the upper bound, although it does impact on the upper bounds tightness. Notably, we formally state the corrected result and additionally compare the relative tightness of the corrected upper bound with the original. In particular, we show that the updated bound is tighter in all but only a relatively “small” number of cases using both formal techniques and via Monte Carlo simulation techniques.

Item Type: Article
Additional Information: © 2024 The Author(s)
Divisions: Mathematics
Subjects: Q Science > QA Mathematics
Date Deposited: 16 Dec 2024 12:21
Last Modified: 21 Jan 2025 09:45
URI: http://eprints.lse.ac.uk/id/eprint/126399

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics