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Abstract: In this paper, we study the (classical) Frobenius problem, namely the problem of finding the
largest integer that cannot be represented as a nonnegative integer combination of given, relatively
prime, (strictly) positive integers (known as the Frobenius number). The main contribution of this
paper are observations regarding a previously known upper bound on the Frobenius number where,
in particular, we observe that a previously presented argument features a subtle error, which alters
the value of the upper bound. Despite this, we demonstrate that the subtle error does not impact
upon on the validity of the upper bound, although it does impact on the upper bounds tightness.
Notably, we formally state the corrected result and additionally compare the relative tightness of the
corrected upper bound with the original. In particular, we show that the updated bound is tighter in
all but only a relatively “small” number of cases using both formal techniques and via Monte Carlo
simulation techniques.

Keywords: Frobenius problem; Frobenius number; Diophantine equations; knapsack problems;
knapsack polytopes; integer programming
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1. Introduction

Let a be a positive integer n-dimensional primitive vector, i.e., a = (a1, . . . , an)T ∈ Zn
>0

with gcd(a) := gcd(a1, . . . , an) = 1, where Zn
>0 denotes the set of n-dimensional vectors

with strictly positive integer entries. In what follows, we exclude the case n = 1 and
assume that the dimension n ≥ 2. In particular, without the loss of generality, we assume
the following conditions:

a = (a1, . . . , an)
T ∈ Zn

>0 , n ≥ 2 and gcd(a) := gcd(a1, . . . , an) = 1. (1)

The Frobenius number of a, denoted by F(a), is the largest integer that cannot be represented
as a nonnegative integer combination of the ais, i.e.,

F(a) := max
{

b ∈ Z : b ̸= aTz for all z ∈ Zn
≥0

}
,

where aT denotes the transpose of a. It should be noted for completeness that the Frobenius
problem, namely the problem of finding the Frobenius number, is also known by other
names within the literature including the money-changing problem (or the money-changing
problem of Frobenius, or the coin-exchange problem of Frobenius) [1–3], the coin problem
(or the Frobenius coin problem) [4,5], and the Diophantine problem of Frobenius [6,7].
From a geometric viewpoint, F(a) is the maximal right-hand side b ∈ Z such that the
knapsack polytope

P(a, b) =
{

x ∈ Rn
≥0 : aTx = b

}
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does not contain integer points. Note that P(a, b) is simply the intersection of a hyperplane
defined by a and b with the nonnegative orthant. It should be noted that the conditions in (1)
are indeed necessary and sufficient conditions for the existence of the Frobenius number.

Note that instead of the conditions in (1), some authors instead assume the stronger
condition that all the entries of the vector are pairwise coprime, i.e.,

a = (a1, . . . , an)
T ∈ Zn

>0 , n ≥ 2 and gcd(ai, aj) = 1 for any i, j ∈ {1, 2, . . . , n} with i ̸= j. (2)

It should be noted that not all integer vectors satisfying (1) also satisfy the stronger condi-
tions (2). The vector a = (6, 10, 15)T , for example, satisfies gcd(6, 10, 15) = 1 but not the
pairwise coprime condition, since gcd(6, 10) ̸= 1.

There is a very rich history on Frobenius numbers and the book [8] provides a very
good survey of the problem. It is worth noting that computing the Frobenius number
in general is NP-hard [9] (which was proved via a reduction to the integer knapsack
problem); however, if the number of integers n is fixed, then a polynomial time algorithm to
calculate F(a) exists [10]. If n = 2, it is well known (most likely due to Sylvester [11]) that

F(a1, a2) = a1a2 − a1 − a2

= (a1 − 1)(a2 − 1)− 1 .
(3)

In contrast to the case when n = 2, it was shown by Curtis [12] that no closed formula
exists for the Frobenius number if n > 2. In light of this, there has been a great deal of
research into producing upper bounds on F(a). These bounds share the property that in
the worst case they are of a quadratic order with respect to the maximum absolute valued
entry of a, which will be denoted by ∥a∥∞. Further, let ∥ · ∥2 denote the Euclidean norm. In
particular, upon assuming that a1 ≤ a2 ≤ · · · ≤ an holds, such bounds include the classical
bound by Erdős and Graham [13] [Theorem 1],

F(a) ≤ 2an−1

⌊ an

n

⌋
− an,

by Selmer [6],

F(a) ≤ 2an

⌊ a1

n

⌋
− a1,

by Vitek [14] [Theorem 5],

F(a) ≤ 1
2
(a2 − 1)(an − 2)− 1,

by Beck et al. [15] [Theorem 9],

F(a) ≤ 1
2

(√
a1a2a3(a1 + a2 + a3)− a1 − a2 − a3

)
,

and by Fukshansky and Robins [16] [Equation (29)],

F(a) ≤
⌊
(n − 1)2 Γ( n+1

2 )

π(n−1)/2

n

∑
i=1

ai

√
∥a∥2

2 − a2
i + 1

⌋
,

where Γ(·) and ⌊ · ⌋ denote Euler’s gamma and the standard floor functions, respectively.
It is worth noting that providing accurate upper bounds in the general setting, namely

without additional assumptions on the vector a, is not the only direction of research. In
particular, there have been results on lower bounds for F(a) (e.g., [17–19]), some explicit
formulas provided in special cases (e.g., [6,20–27]) and algorithms for computing the
Frobenius number (e.g., [1,10,28–33]).

Building on these directions of research, this paper is motivated by the need for
accurate and reliable upper bounds on the Frobenius number, particularly in settings
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with minimal assumptions on the input vector a. Such bounds play a crucial role in
understanding the complexity of the Frobenius problem and its connections to optimisation
problems such as the knapsack (see, e.g., [34] [Chapter 16]) and subset–sum (see, e.g., [34]
[Chapter 35]) problems.

This paper focuses on refining a well-known upper bound, originally proposed by
Beck et al. [15] [Theorem 9]. While this bound has been cited in the literature, we identify
a subtle error in its derivation that, while not invalidating the bound itself, affects its
tightness. Our primary contribution is the formal correction of this result, alongside a
rigorous comparison of the relative tightness of the corrected and original bounds. Through
theoretical analysis and Monte Carlo simulations, we demonstrate that the corrected bound
is tighter in “nearly all” cases. This work not only addresses a key issue in the existing
literature but also enhances our understanding of the structure of upper bounds under
general settings, paving the way for further advancements in this area of research.

2. Preliminary and Auxiliary Results

In this section, we present some preliminary results that are essential for establishing
a requirement for upper bounds on F(a) when the more general conditions (1) on a hold.
In particular, this requirement is induced via a simple lower bound which considers the
parity of the ais and is formally introduced below.

Proposition 1. If an integer vector a satisfies (1), then at least one ai must be odd for
i ∈ {1, 2, . . . , n}.

Proof. Suppose for contradiction that there does not exist an odd ai, i.e., that a has only
even elements. It follows immediately that gcd(a) ≥ 2, which contradicts the assumed
conditions in (1), as required.

Denote by ot := ot(a) the t-th smallest odd element in a. Observe that Proposition 1
implies that o1 necessarily exists for any integer vector a satisfying (1).

Proposition 2. If an integer vector a satisfies (1), then o1 − 2 is a lower bound for F(a).

Proof. Firstly, observe that since o1 is the smallest odd element in a, it follows that
any odd number strictly less than o1 cannot be expressed as ∑n

i=1 aixi for xi ∈ Z≥0 for
i ∈ {1, 2, . . . , n}. In particular, o1 − 2 cannot be expressed as a nonnegative integer linear
combination of the ais. Thus, the Frobenius number F(a) is at least o1 − 2, as required.

The propositions outlined can be applied to establish a requirement for upper bounds
on the Frobenius number, particularly where the weaker conditions (1) concerning the
vector a are met.

Lemma 1. If an integer vector a = (a1, a2, . . . , an)T satisfies (1) with a1 ≤ a2 ≤ · · · ≤ an, then
any general upper bound on the Frobenius number F(a) must inherently depend on the largest
element an.

Proof. Let us suppose for simplicity that the vector a has the form that ai is even for each
i ∈ {1, 2, . . . , n − 1} while the final entry an is odd. Notice that here, o1 = an and, in light of
Proposition 2, it immediately follows that F(a) ≥ an − 2.

Suppose for contradiction that there exists an upper bound on F(a) that does not de-
pend on an, i.e., that there exists some function f : Rn−1 → R satisfying
F(a) ≤ f (a1, a2, . . . , an−1). If we set an = f (a1, a2, . . . , an−1) + 3 if f (a1, a2, . . . , an−1) is
even and an = f (a1, a2, . . . , an−1) + 4 if f (a1, a2, . . . , an−1) is odd, then we observe that
an − 2 > f (a1, a2, . . . , an−1) holds. In particular, notice that the lower bound on the Frobe-
nius number is strictly larger than the (assumed) upper bound, which is a contradiction,
as required.
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It should be emphasised that this result suggests that any (general) upper bound
on the Frobenius number which does not depend on the maximal entry of a does not
necessarily hold in general without stronger assumptions than the conditions in (1).

The following results provide a rather surprisingly useful property that holds when a
satisfies the stronger conditions (2) that all the entries of the vector are pairwise coprime.

Lemma 2. If an integer vector a = (a1, a2, . . . , an)T satisfies (2), then for any i, j ∈ {1, 2, . . . , n}
with i ̸= j, we have

F(a) ≤ (ai − 1)(aj − 1)− 1.

Proof. Firstly, notice that given any pair ai and aj with i ̸= j, in light of the conditions
in (2), it follows that gcd(ai, aj) = 1. Thus, the Frobenius number F(ai, aj) corresponding to
the pair ai and aj exists and takes a finite value. Furthermore, it follows, in light of (3), that
the equality

F(ai, aj) = (ai − 1)(aj − 1)− 1

holds. By the definition of Frobenius number, we deduce that all integers strictly greater
than (ai − 1)(aj − 1) − 1 can be expressed as aixi + ajxj for some xi, xj ∈ Z≥0. Thus,
it immediately follows that all integers strictly greater than (ai − 1)(aj − 1) − 1 can be
expressed as ∑n

k=1 akxk for xk ∈ Z≥0 for k ∈ {1, 2, . . . , n} (upon setting xk = 0 when k ̸= i, j
whenever necessary). In particular, this shows that the Frobenius number F(a) satisfies the
inequality F(a) ≤ (ai − 1)(aj − 1)− 1 for any i ̸= j, as required.

The following corollary follows immediately from Lemma 2.

Corollary 1. If an integer vector a = (a1, a2, . . . , an)T satisfies (2) and a1 ≤ a2 ≤ · · · ≤ an, then

F(a) ≤ (a1 − 1)(a2 − 1)− 1.

It should be emphasised that the above results tell us that the well-known result (3) of
Sylvester [11] extends naturally to provide an upper bound for the Frobenius number F(a)
under the (stronger) assumption (2) that the entries of the vector a are pairwise coprime.

3. Observations on a Previously-Known Upper Bound

Recall that Beck et al. [15], Theorem 9 introduced the upper bound

F(a) ≤ 1
2

(√
a1a2a3(a1 + a2 + a3)− a1 − a2 − a3

)
(4)

on the Frobenius number upon finding bounds for Fourier–Dedekind sums. This bound (4)
is widely referenced across books and papers; however, in most of these, little attention
is given to the underlying assumed conditions on a. In particular, the upper bound (4)
necessitates that the stronger conditions (2) hold, instead of the more general (weaker)
conditions (1).

Proposition 3. The upper bound (4) of Beck et al. [15], Theorem 9 does not necessarily hold unless
the stronger conditions (2) hold. This requirement remains even if the weaker conditions (1) are met.

Proof. Observe that if n = 2, then the stronger (2) and weaker conditions (1) are equiv-
alent. Thus, we focus here only on the case that n ≥ 3, where we show that there are
counterexamples for each n.

Let us consider two cases, namely n = 3 and n ≥ 4, respectively. If n = 3, then
consider the integer vector a = (3, 6, 19)T with F(a) = 35. In such case, notice that the
bound (4) yields

1
2

(√
3 · 6 · 19 (3 + 6 + 19)− 3 − 6 − 19

)
=

1
2

(
6
√

266 − 28
)
≈ 34.928519 (5)
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where, in particular, 35 ̸≤ 34.928519 and, hence, the upper bound (4) fails when n = 3. If,
instead, n ≥ 4, then in light of Lemma 1, clearly (4) cannot be a general upper bound for
the Frobenius number.

Note that in the case of n ≥ 4, any vector a = (2, 4, 6, a4, . . . , an)T satisfying (1)
and an ≥ · · · ≥ a4 > 7 provides a counterexample for any n. Indeed, since a4 > 7 by
assumption, the Frobenius number is clearly greater than or equal to 7 (since 7 cannot be
expressed by ∑n

i=1 aixi for xi ∈ Z≥0 for all i). Despite this, the bound (4) yields

1
2

(√
2 · 4 · 6 (2 + 4 + 6)− 2 − 4 − 6

)
= 6, (6)

which demonstrates that the upper bound (4) does not necessarily hold if only the weaker
conditions (1) are met.

The remarks presented in this section are intended to clarify a common misunderstand-
ing about the upper bound (4) as referenced in various books and papers. Furthermore, it
is crucial to highlight a subtle error in the argument presented by Beck et al. [15], which
alters the value of the upper bound. The following result states the corrected upper bound,
where the proof is outlined in a later section.

Theorem 1. If an integer vector a = (a1, a2, . . . , an)T satisfies (2) with a1 ≤ a2 ≤ · · · ≤ an, then
the argument of Beck et al. [15] yields

F(a) ≤ 1
2

(√
1
3
(a1 + a2 + a3)(a1 + a2 + a3 + 2a1a2a3) +

8
3
(a1a2 + a2a3 + a3a1)

− a1 − a2 − a3

)
.

(7)

It is natural to consider if the original bound (4) given by Beck et al. [15], Theorem 9
is indeed correct provided that the integer vector a satisfies the stronger conditions (2). It
turns out that the upper bound (4) remains valid. The following result states this formally,
where the proof is outlined in a later section.

Theorem 2. If an integer vector a = (a1, a2, . . . , an)T satisfies (2) with a1 ≤ a2 ≤ · · · ≤ an, then

F(a) ≤ 1
2

(√
a1a2a3(a1 + a2 + a3)− a1 − a2 − a3

)
.

Furthermore, it is natural to consider the relative tightness of (1) with (4). This
comparison will be explored in the subsequent section of the paper.

4. Tightness Comparison of Upper Bounds

In this section, we consider the relative tightness of the upper bounds (1) and (4). In
particular, to slightly simplify notation, let us denote by

UB1(a) = UB1(a1, a2, a3)

:=
1
2

(√
1
3
(
a1 + a2 + a3

)(
a1 + a2 + a3 + 2a1a2a3

)
+

8
3
(
a1a2 + a2a3 + a3a1

)
− a1 − a2 − a3

)
and

UB2(a) = UB2(a1, a2, a3) :=
1
2

(√
a1a2a3(a1 + a2 + a3)− a1 − a2 − a3

)
.
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Recall that Theorem 1 and 2 imply that UB1(a) and UB2(a) are valid upper bounds
provided that a satisfies (2) and a1 ≤ a2 ≤ · · · ≤ an; however, we are instead interested in
which bound is tighter. The first result of this section shows that UB2(a) is tighter than
UB1(a) in only a relatively “small” (finite) number of cases, where the proof is excluded,
given that this was completed via simple enumeration.

Theorem 3. If an integer vector a = (a1, a2, . . . , an)T satisfies (2) with a1 ≤ a2 ≤ · · · ≤ an, then
F(a) satisfies F(a) ≤ UB1(a) and F(a) ≤ UB2(a), where UB2(a) is sharper only when

(a1, a2, a3) ∈
{
(1, 2, 3), (1, 2, 5), (1, 2, 7), (1, 2, 9), (1, 2, 11), (1, 2, 13), (1, 2, 15),

(1, 2, 17), (1, 2, 19), (1, 2, 21), (1, 2, 23), (1, 2, 25), (1, 3, 4), (1, 3, 5),

(1, 3, 7), (1, 3, 8), (1, 3, 10), (1, 3, 11), (1, 3, 13), (1, 3, 14), (1, 4, 5),

(1, 4, 7), (1, 4, 9), (1, 4, 11), (1, 5, 6), (1, 5, 7), (1, 5, 8), (1, 5, 9), (1, 6, 7), (2, 3, 5)
}

.

It should be emphasised that this result suggests that in “almost all” cases, UB1(a)
provides a tighter bound than UB2(a). Note that in the above, we assume the stronger
conditions (2) rather than the weaker conditions (1) since the examples (5) and (6) show
that UB1(a) and UB2(a) do not necessarily apply under only (1). In order to compare the
relative tightness of the bounds, for completeness, we applied Monte Carlo simulation
techniques (see, e.g., [35] [Chapter 2]) and present the results below.

During this simulation, we firstly randomly generated integer vectors a satisfying the
conditions (2) with the ordering a1 ≤ a2 ≤ · · · ≤ an before computing the values of UB1(a)
and UB2(a). This process was iteratively repeated 100,000 times. During the sampling,
we set ∥a∥∞ = maxi |ai| ≤ 1000 for convenience. Note that in each graph in Figure 1, the
vertical axis corresponds to the difference UB1(a)− UB2(a), where a large vertical value
illustrates that the corrected upper bound (7) is much tighter than the originally stated
bound (4).

Figure 1a demonstrates that the difference UB1(a) − UB2(a) grows rapidly with
increases in a3, while the difference remains small if a3 is small. It should be emphasised
that one would not expect the difference to be significant when a3 is small given that
the entries of a are ordered by assumption. Figure 1b shows how this differences varies
upon increases in a1a2. Notably, the figure suggests that the minimum difference increases
linearly with a1a2, whereas the maximum difference seems to grow sublinearly with
a1a2. Furthermore, if a1a2 is large (around 1,000,000), then the variance of the difference
UB1(a)− UB2(a) appears small. This can be explained by considering the difference

UB1(a)− UB2(a) =
1
2

(√
a1a2a3(a1 + a2 + a3)

−
√

1
3

a1a2a3(a1 + a2 + a3) + (a1 + a2 + a3)
2 +

8
3
(a1a2 + a2a3 + a3a1)

)
,

which is maximised for fixed a1a2 when a3 is large and is minimised when a3 is small. In
particular, note that if a3 is small, then the assumed ordering implies that a3 ≈ a2. In such
case, the value of the difference can be well approximated by

1
2

a1a2

(
√

3 −

√
2 +

11
a1a2

)
,

which grows roughly linearly. If, instead, a1a2 is large (say around 1,000,000), then the
assumed ordering and upper bound on the ais restricts variance in both UB1(a) and
UB2(a), respectively. Figure 1c demonstrates that the difference UB1(a)− UB2(a) grows
sublinearly with the product a1a2a3, while the variance once more appears small, which can
be similarly explained via careful algebraic analysis. Figure 1d shows how this difference
varies upon increases in a1 + a2 + a3, where the variance decreases significantly as the value
of a1 + a2 + a3 grows beyond 2000. Notably, the final figure suggests that one should expect
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the difference UB1(a) − UB2(a) to be small only in the scenario that a1 is “reasonably
small”, which follows in light of the assumed ordering.

(a) (b)

(c) (d)
Figure 1. This figure illustrates how the difference UB1(a)− UB2(a) varies dependently upon the
ais. (a) UB1(a)− UB2(a) upon increasing the entry a3. (b) UB1(a)− UB2(a) upon increasing the
product a1a2. (c) UB1(a)− UB2(a) upon increasing the product a1a2a3. (d) UB1(a)− UB2(a) upon
increasing the sum a1 + a2 + a3.

5. Proof of Theorem 1

In this section, we follow closely the argument presented by Beck et al. [15] [Theorem 9]
to demonstrate that it actually yields the upper bound (7) instead of (4). It should be noted
that the proof presented by Beck et al. [15] instead provides an upper bound for

F∗(a) : = max
{

b ∈ Z : b ̸= aTz for all z ∈ Zn
>0

}
= F(a) + a1 + a2 + · · ·+ an,

which is the largest integer that cannot be represented as a (strictly) positive integer
combination of the ais.

Let A = {a1, a2, . . . , an} be a set of pairwise coprime positive integers and define
the function

p′A(b) = #

{
(m1, . . . , mn)

T ∈ Zn
>0 :

n

∑
k=1

mk ak = b

}
,

where # denotes the cardinality of the set. Specifically, p′A(b) counts the number of (strictly)
positive tuples (m1, . . . , mn)

T ∈ Zn
>0 satisfying the equality ∑n

k=1 mk ak = b. Notice that
F∗(a) is simply the largest value for b for which p′A(b) = 0.

Let c1, c2, . . . , cn ∈ Z be relatively prime to c ∈ Z, and t ∈ Z. We define the
Fourier–Dedekind sum as

σt(c1, . . . , cn; c) =
1
c ∑

λc=1 ̸=λ

λt

(λc1 − 1) · · · (λcn − 1)
.



Mathematics 2024, 12, 4029 8 of 12

Note that one particularly noteworthy expression (which is followed by periodicity) [15] is

σt(a, b; c) =
c−1

∑
m=0

((
−a−1(bm + t)

c

))((m
c

))
− 1

4c
(8)

with aa−1 ≡ 1 (mod c) and where ((x)) = x − ⌊x⌋ − 1
2 is a sawtooth function.

Proof. Firstly, note that it is easy to verify that

F∗(a) = F∗(a1, a2, . . . , an) ≤ F∗(a1, a2, a3) + a3 + a4 + · · ·+ an.

We closely follow [15] by focusing on the case where n = 3 and the ais are pairwise coprime.
In order to slightly simplify notation, let a, b, c denote pairwise relatively prime positive
integers. Upon using the the Cauchy–Schwartz inequality, we find that

σt(a, b; c) ⩾ −
c−1

∑
m=0

((m
c

))2
− 1

4c
=

c−1

∑
m=0

(
m
c
− 1

2

)2
− 1

4c

= −1(2c − 1)(c − 1)c
c2 +

1
c

c(c − 1)
2

− c
4
− 1

4c

= − c
12

− 5
12c

.

It should be noted that in [15], the right-hand side of the expression previously discussed
differs from the one presented here. We can now utilise the above inequality to obtain

p′{a,b,c}(t) ≥
t2

2abc
− t

2

(
1
ab

+
1
ac

+
1
bc

)
+

1
12

(
3
a
+

3
b
+

3
c
+

a
bc

+
b
ac

+
c

ab

)
− 1

12
(a + b + c)− 5

12

(
1
a
+

1
b
+

1
c

)
=

t2

2abc
− t

2

(
1
ab

+
1
ac

+
1
bc

)
+

1
12

(
a
bc

+
b
ac

+
c

ab

)
− 1

12
(a + b + c)− 1

6

(
1
a
+

1
b
+

1
c

)
,

which, upon algebraic manipulation, yields the upper bound

F∗(a, b, c) ≤ 1
2
(a + b + c) +

1
2

√
1
3
(a + b + c)(a + b + c + 2abc) +

8
3
(ab + bc + ca)

Thus, upon replacing a, b and c with a1, a2 and a3, respectively, we deduce that

F∗(a) ≤ F∗(a1, a2, a3) + a3 + a4 + · · ·+ an

≤
(

1
2

√
1
3
(a1 + a2 + a3)(a1 + a2 + a3 + 2a1a2a3) +

8
3
(a1a2 + a2a3 + a3a1) + a1 + a2 + a3

)
+ a3 + a4 + · · ·+ an

which yields that

F(a) = F∗(a)− a1 − a2 − · · · − an

≤ 1
2

(√
1
3
(a1 + a2 + a3)(a1 + a2 + a3 + 2a1a2a3) +

8
3
(a1a2 + a2a3 + a3a1)

− a1 − a2 − a3

)
as required, which concludes the proof.
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6. Proof of Theorem 2

Recall the notation

UB1(a) :=
1
2

(√
1
3
(
a1 + a2 + a3

)(
a1 + a2 + a3 + 2a1a2a3

)
+

8
3
(
a1a2 + a2a3 + a3a1

)
− a1 − a2 − a3

)
and

UB2(a) :=
1
2

(√
a1a2a3(a1 + a2 + a3)− a1 − a2 − a3

)
.

In this section, we show that UB2(a) is a valid upper bound on the Frobenius number
F(a) provided a satisfies (2) and a1 ≤ a2 ≤ · · · ≤ an. It should be noted that the stronger
condition (2) with the (assumed) ordering of the ais implies that a1 < a2 < · · · < an,
provided that a1 > 1. Before discussing the correctness of the upper bound UB2(a), we
firstly consider how this bound varies with changes in a3.

Proposition 4. If a1 < a2 < a3, then UB2(a) is a strictly increasing function in a3. If, instead,
a1 ≤ a2 ≤ a3 holds, then UB2(a) is a nondecreasing function in a3.

Proof. Upon partial differentiation with respect to a3, observe that UB2(a) becomes

∂UB2(a)
∂a3

=
1
2

(
a1a2(a1 + a2 + 2a3)

2
√

a1a2a3(a1 + a2 + a3)
− 1

)
.

If a1 < a2 < a3, then note that a1a2(a1 + a2 + 2a3) > 4a3 holds. Upon simple algebraic
manipulation, we deduce that a2

1a2
2(a1 + a2 + 2a3)

2 > 4a1a2a3(a1 + a2 + a3), which im-
plies that

a1a2(a1 + a2 + 2a3)

2
√

a1a2a3(a1 + a2 + a3)
> 1.

It follows that ∂UB2(a)
∂a3

> 0 and, hence, UB2(a) is a strictly increasing function in a3 when

a1 < a2 < a3. If, instead, a1 ≤ a2 ≤ a3, then a similar argument yields that ∂UB2(a)
∂a3

≥ 0 and,
hence, UB2(a) is a nondecreasing function in a3, as required.

We now proceed to present a detailed proof to establish the validity of Theorem 2.

Proof. Observe that if UB2(a) ≥ UB1(a), then clearly the upper bound UB2(a) is valid in
consequence to the validity of Theorem 1. Thus, we consider only the setting where
UB2(a) < UB1(a). Notice that upon simple algebraic manipulation, the inequality
UB2(a) ≤ UB1(a) is equivalent to

a1a2a3(a1 + a2 + a3) ≤ a2
1 + a2

2 + a2
3 + 10(a1a2 + a2a3 + a1a3). (9)

It is sufficient to here consider only the case that a1 < a2 < a3. In particular, this
follows because otherwise we require a1 = 1 in light of the assumed conditions in (2), and
hence, in such case, we yield that F(a) = −1 ≤ UB2(a) holds, as required.
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In order to satisfy (9), the (strict) inequality a1a2 < 33 is necessary. Indeed, if instead
a1a2 ≥ 33, then

a1a2a3(a1 + a2 + a3) = a1a2a2
3 + a1a2a3(a1 + a2)

> a1a2a2
3

≥ 33a2
3

= 3a2
3 + 10(a2

3 + a2
3 + a2

3)

> a2
1 + a2

2 + a2
3 + 10(a1a2 + a2a3 + a1a3)

holds, where the final inequality follows since a1, a2 < a3. Thus, we need only to consider
the cases that a1a2 ≤ 32 and a1 < a2 with gcd(a1, a2) = 1. The pairs (a1, a2) satisfying these
conditions are as follows:

1. if a1 = 1, then (a1, a2) = (1, 2), (1, 3), . . . , (1, 31), (1, 32);
2. if a1 = 2, then (a1, a2) = (2, 3), (2, 5), (2, 7), (2, 9), (2, 11), (2, 13), (2, 15);
3. if a1 = 3, then (a1, a2) = (3, 4), (3, 5), (3, 7), (3, 8), (3, 10);
4. if a1 = 4, then (a1, a2) = (4, 5), (4, 7);
5. if a1 = 5, then (a1, a2) = (5, 6).

It should be emphasised that if UB2(a) is a valid upper bound in each of the above
cases, then it follows that UB2(a) is a valid upper bound, as required. In order to com-
plete the proof, we now consider each of these cases in turn. It should be noted that
cases (ii)–(v) use the properties F(a) ≤ (a1 − 1)(a2 − 1)− 1 (which follows Corollary 1)
and UB(a1, a2, a′3) > UB(a1, a2, a3) when a′3 > a3 (which follows Proposition 4).

1. a1 = 1: In this case, notice that since the entries of the vector a are coprime by assump-
tion, it follows that we have a2 ≥ 2 and a3 ≥ 3. Note that we have (a2 − 1)(a3 − 1) ≥ 2
and a2a3 ≥ 1 + a2 + a3. These inequalities imply that

a2a3(1 + a2 + a3) ≥ (1 + a2 + a3)
2

which, upon rearranging algebraically, yields that

1
2

(√
a2a3(1 + a2 + a3)− (1 + a2 + a3)

)
= UB2(1, a2, a3, . . . , an) ≥ 0.

Finally, observe that the equality F(1, a2, a3, . . . , an) = −1 holds for all a2, a3, . . . , an
and, thus, UB2(a) is a valid upper bound in this scenario.

2. a1 = 2: In this case, notice that

F(2, 3, a3, a4, . . . , an) ≤ (2 − 1)(3 − 1)− 1 = 1 < 3.660254 = UB2(2, 3, 5) ≤ UB2(2, 3, 5),

where the strict inequality follows since if (a1, a2) = (2, 3), then a3 ≥ 5 by the
conditions (2). In a similar fashion, notice that

F(2, 5, a3, a4, . . . , an) ≤ (2 − 1)(5 − 1)− 1 = 3 < 8.652476 = UB2(2, 5, 7) ≤ UB2(2, 5, a3),

F(2, 7, a3, a4, . . . , an) ≤ (2 − 1)(7 − 1)− 1 = 5 < 14.811762 = UB2(2, 7, 9) ≤ UB2(2, 7, a3),

F(2, 9, a3, a4, . . . , an) ≤ (2 − 1)(9 − 1)− 1 = 7 < 22 = UB2(2, 9, 11) ≤ UB2(2, 9, a3),

F(2, 11, a3, a4, . . . , an) ≤ (2 − 1)(11 − 1)− 1 = 9 < 30.116122

= UB2(2, 11, 13) ≤ UB2(2, 11, a3),

F(2, 13, a3, a4, . . . , an) ≤ (2 − 1)(13 − 1)− 1 = 11 < 39.083269

= UB2(2, 13, 15) ≤ UB2(2, 13, a3),
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F(2, 15, a3, a4, . . . , an) ≤ (2 − 1)(15 − 1)− 1 = 13 < 48.8407169

= UB2(2, 15, 17) ≤ UB2(2, 15, a3).

3. a1 = 3: In this case, notice that

F(3, 4, a3, a4, . . . , an) ≤ (3 − 1)(4 − 1)− 1 = 5 < 7.416408 = UB2(3, 4, 5) ≤ UB2(3, 4, a3),

F(3, 5, a3, a4, . . . , an) ≤ (3 − 1)(5 − 1)− 1 = 9 < 12.343135 = UB2(3, 5, 7) ≤ UB2(3, 5, a3),

F(3, 7, a3, a4, . . . , an) ≤ (3 − 1)(7 − 1)− 1 = 11 < 18.495454 = UB2(3, 7, 8) ≤ UB2(3, 7, a3),

F(3, 8, a3, a4, . . . , an) ≤ (3 − 1)(8 − 1)− 1 = 13 < 27.105118 = UB2(3, 8, 11) ≤ UB2(3, 8, a3),

F(3, 10, a3, a4, . . . , an) ≤ (3 − 1)(10 − 1)− 1 = 17 < 32.497191

= UB2(3, 10, 11) ≤ UB2(3, 10, a3).

4. a1 = 4: In this case, notice that

F(4, 5, a3, a4, . . . , an) ≤ (4 − 1)(5 − 1)− 1 = 11 < 15.6643191 = UB2(4, 5, 7) ≤ UB2(4, 5, a3),

F(4, 7, a3, a4, . . . , an) ≤ (4 − 1)(7 − 1)− 1 = 17 < 25.496479 = UB2(4, 7, 9) ≤ UB2(4, 7, a3).

5. a1 = 5: In this case, notice that

F(5, 6, a3, a4, . . . , an) ≤ (5 − 1)(6 − 1)− 1 = 19 < 21.740852 = UB2(5, 6, 7) ≤ UB2(5, 6, a3).

Thus, provided that a1a2 ≤ 32, then F(a) < UB2(a1, a2, a3) = UB2(a). Thus, it follows that
UB2(a) is indeed a valid upper bound in all cases, which concludes the proof.

7. Conclusions and Future Work

In this paper, we revisited the classical Frobenius problem and examined a previously
established upper bound on the Frobenius number. Our analysis revealed a subtle error
in the original argument of Beck et al. [15], Theorem 9, leading to a revised and corrected
upper bound. While this error did not invalidate the bound itself, it impacted its tightness.
We also compared the relative tightness of the original and corrected bound through
theoretical analysis and Monte Carlo simulations, demonstrating that the corrected bound
is tighter in all but a relatively “small” (finite) number of cases.

This study opens several rather promising avenues for future research. Firstly, a
case-specific analysis could explore the behavior and tightness of upper bounds under
different assumptions around the distribution of the input vector a, such as uniform or
exponential distributions. This would provide deeper insights into how the nature of the
input impacts upon the bounds’ performance. Secondly, exploring the applications of
these bounds in optimisation problems, particularly in knapsack or subset–sum problems,
would be valuable. Understanding particularly how these bounds influence computational
efficiency and solution “quality” in real-world settings could significantly broaden their
utility. Finally, the further examination of the geometric properties of the knapsack polytope
P(a, b) associated with the Frobenius problem may uncover deeper connections between
geometric insights and the derivation of (perhaps) sharper upper bounds, particularly in
higher-dimensional scenarios or under additional assumptions.
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