Cookies?
Library Header Image
LSE Research Online LSE Library Services

Bayesian Markov switching model for BRICS currencies' exchange rates

Kumar, Utkarsh, Ahmad, Wasim and Uddin, Gazi Salah (2024) Bayesian Markov switching model for BRICS currencies' exchange rates. Journal of Forecasting. ISSN 0277-6693

[img] Text (Kumar__Bayesian-Markov-switching-model-for-BRICS-currencies-exchange-rates--published) - Published Version
Available under License Creative Commons Attribution.

Download (2MB)

Identification Number: 10.1002/for.3128

Abstract

Exchange rate modeling has always fascinated researchers because of its complex macroeconomic dynamics. This study documents the exchange rate dynamics of major emerging economies after accounting for their macroeconomic cycles and explores the Bayesian Vector Error Correction Model (VECM) Markov Regime switching model, which uses time-varying transition probabilities. The main objective is to study the exchange rate dynamics of Brazil, Russia, India, China, and South Africa (BRICS) vis-à-vis the US dollar. The Bayesian setup uses two hierarchal shrinkage priors, the normal-gamma (NG) prior and the Litterman prior, for parameters' estimation. These shrinkage priors allow for a more comprehensive assessment of the regime-specific coefficients. The model performed well in differentiating between the two regimes for all currencies. The Russian ruble was identified to be the most depreciated currency, whereas the African Rand was the most appreciated. The evaluation of model features revealed that many regime-specific coefficients differed significantly from their common mean. A forecasting exercise was then performed for the out-of-sample period to assess the model's performance. A significant improvement was observed over the basic random walk (RW) model and the linear Bayesian vector autoregression (BVAR) model.

Item Type: Article
Official URL: https://onlinelibrary.wiley.com/journal/1099131x
Additional Information: © 2024 The Authors
Divisions: International Inequalities Institute
Subjects: H Social Sciences > HG Finance
Q Science > QA Mathematics
JEL classification: C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Other Model Applications
E - Macroeconomics and Monetary Economics > E4 - Money and Interest Rates > E47 - Forecasting and Simulation
Date Deposited: 26 Apr 2024 14:09
Last Modified: 20 Jun 2024 03:39
URI: http://eprints.lse.ac.uk/id/eprint/122816

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics