Cookies?
Library Header Image
LSE Research Online LSE Library Services

A latent Gaussian process model for analysing intensive longitudinal data

Chen, Yunxiao and Zhang, Siliang (2020) A latent Gaussian process model for analysing intensive longitudinal data. British Journal of Mathematical and Statistical Psychology, 73 (2). 237 - 260. ISSN 0007-1102

[img] Text (A latent Gaussian process model for analyzing intensive longitudinal data) - Accepted Version
Repository staff only until 16 August 2020.
Available under License Creative Commons Attribution Non-commercial.

Download (692kB) | Request a copy

Identification Number: 10.1111/bmsp.12180

Abstract

Intensive longitudinal studies are becoming progressively more prevalent across many social science areas, and especially in psychology. New technologies such as smart-phones, fitness trackers, and the Internet of Things make it much easier than in the past to collect data for intensive longitudinal studies, providing an opportunity to look deep into the underlying characteristics of individuals under a high temporal resolution. In this paper we introduce a new modelling framework for latent curve analysis that is more suitable for the analysis of intensive longitudinal data than existing latent curve models. Specifically, through the modelling of an individual-specific continuous-time latent process, some unique features of intensive longitudinal data are better captured, including intensive measurements in time and unequally spaced time points of observations. Technically, the continuous-time latent process is modelled by a Gaussian process model. This model can be regarded as a semi-parametric extension of the classical latent curve models and falls under the framework of structural equation modelling. Procedures for parameter estimation and statistical inference are provided under an empirical Bayes framework and evaluated by simulation studies. We illustrate the use of the proposed model though the analysis of an ecological momentary assessment data set.

Item Type: Article
Official URL: https://onlinelibrary.wiley.com/journal/20448317
Additional Information: © 2019 The British Psychological Society
Divisions: Statistics
Subjects: B Philosophy. Psychology. Religion > BF Psychology
H Social Sciences > HA Statistics
Date Deposited: 04 Jul 2019 11:36
Last Modified: 29 Jun 2020 23:24
URI: http://eprints.lse.ac.uk/id/eprint/101121

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics