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Abstract

Intensive longitudinal studies are becoming progressively more prevalent across

many social science areas, especially in psychology. New technologies like smart-

phones, fitness trackers, and the Internet of Things make it much easier than in

the past for data collection in intensive longitudinal studies, providing an oppor-

tunity to look deep into the underlying characteristics of individuals under a high

temporal resolution. In this paper, we introduce a new modeling framework for

latent curve analysis that is more suitable for the analysis of intensive longitu-

dinal data than existing latent curve models. Specifically, through the model-

ing of an individual-specific continuous-time latent process, some unique features

of intensive longitudinal data are better captured, including intensive measure-

ments in time and unequally spaced time points of observations. Technically, the

continuous-time latent process is modeled by a Gaussian process model. This

model can be regarded as a semi-parametric extension of the classical latent curve

models and falls under the framework of structural equation modeling. Procedures

for parameter estimation and statistical inference are provided under an empirical

Bayes framework and evaluated by simulation studies. We illustrate the use of

the proposed model though the analysis of an ecological momentary assessment

dataset.
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1 Introduction

Intensive longitudinal data are becoming progressively more prevalent across many social

science areas, especially in psychology, catalysed by technological advances (e.g., Chapter

1, Bolger & Laurenceau, 2013). Such data usually involve many repeated measurements

that reflect individual-specific change process in high resolution, enabling researchers to

answer deeper research questions of human behavioral patterns. Due to the complex

structure of intensive longitudinal data, statistical models play an important role in the

analysis of such data.

In an intensive longitudinal study, repeated measurements are made intensively over

time. Such data may involve (1) a large number of time points, (2) individually-varying

numbers of observations, (3) unequally spaced time points of observations, and (4) re-

sponse data of various types (e.g., continuous, ordinal, etc.). For example, consider

intensive longitudinal data from ecological momentary assessment (EMA) under a signal-

contingent sampling scheme (see Chapter 5, Conner & Lehman, 2012), which repeatedly

measures individuals’ current behaviors and experiences in real time, in the individuals’

natural environments. Under this sampling scheme, participants are “beeped” at several

(random) times a day to complete an electronic diary record on psychological variables,

such as symptoms or well-being. The assessments can last for many days (e.g. a month).

Such a design has been used to study, for example, borderline personality disorder (Trull

et al., 2008), adolescent smoking (Hedeker et al., 2012), and others. We visualize this

design in Figure 1, where the measurements happen at time points marked by “x”. Un-

der such a design, each individual may receive hundreds of repeated measurements at
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Figure 1: An illustration of the signal-contingent sampling scheme of an ecological mo-
mentary assessment.

irregularly spaced time points. Depending on the measurement scale, one or multiple

indicators may be recorded at each observation time point and the indicators can be

either continuous or categorical.

Latent curve models (e.g. Bollen & Curran, 2006; Duncan et al., 2013; Ram & Grimm,

2015), also known as latent growth models or growth curve models, are an important

family of psychometric models for the analysis of longitudinal measurements. These

models characterize the growth or change in an individual through the modeling of an

individual-specific time-varying latent trait, where the latent trait often has a substantive

interpretation, such as a cognitive ability, a psychopathological trait, or subjective well-

being. Such models are typically formulated under the structural equation modeling

framework. In these models, each individual i is represented by a latent curve {θi(t) :

t ≥ 0}, which represents a time-varying latent trait. At a given observation time t, the

individual’s response to a single or multiple items is assumed to be driven by his/her

current latent trait level θi(t).

The classical latent curve models are developed for non-intensive longitudinal data

(typically less than 10 times of measurement). Therefore, they often make strong as-

sumptions on the functional form of θi(t). For example, a linear latent curve model

assumes that θi(t) = βi0 + βi1t, where βi0 and βi1 are the intercept and the slope of the
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curve, treated as individual specific latent variables. In other words, in this linear curve

model, the latent curve θi(t) is a random function, characterized by two random effects

βi0 and βi1 that are often assumed to follow a bivariate normal distribution. Although

θi(t) can take slightly more complex forms (e.g., polynomial), the functional form of

θi(t) in the classical models is usually simple, which may not be suitable for analyzing

individual change processes revealed by intensive longitudinal data, where the number

of measurements may vary across different individuals.

To better capture the temporal pattern in intensive longitudinal data, more flexible

latent curve models have been proposed under the structural equation modeling frame-

work. Depending on whether time is treated as discrete or continuous, these models can

be classified into two categories. The discrete-time models are typically a hybrid of time

series analysis models and the structural equation modeling framework. Specifically, the

individual specific dynamic latent traits are modeled by a time series model, such as

the autoregressive (AR) or vector autoregressive (VAR) models. Such models are usu-

ally known as the latent variable-autoregressive latent trajectory models (Bianconcini

& Bollen, 2018) or dynamic structural equation models (Asparouhov et al., 2018). The

continuous-time models typically assume that the dynamic latent traits follow a stochas-

tic differential equation (SDE; Oud & Jansen, 2000; Voelkle et al., 2012; Lu et al., 2015).

For example, Lu et al. (2015) assume the dynamic latent trait to follow the Ornstein-

Uhlenbeck Gaussian process (Uhlenbeck & Ornstein, 1930), whose distribution is given

by an SDE.

The above models have limitations. Discrete-time models may be over-simplified for

intensive longitudinal data, for which measurement occurs in continuous time. In partic-

ular, when time points of measurements are irregularly spaced and different individuals

have different numbers of measurements, it is difficult to organize intensive longitudinal

data into the format of multivariate time-series data and then analyze using a discrete-
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time model. Arbitrarily transforming data into a multivariate time-series format is likely

to introduce bias into the analysis, as time lags between measurements, which may vary

substantially among individuals, are ignored in the discrete-time formatting. In theory,

these issues with discrete-time models can be addressed by taking a continuous-time

model. However, existing continuous-time models are typically not straightforward to

specify, estimate, and make inference upon, as latent stochastic differential equations are

not straightforward to deal with either analytically or numerically. Moreover, limited

by the form of stochastic differential equations, the existing continuous-time models for

insensitive longitudinal data may not be rich enough.

In this paper, we propose new continuous-time latent curve models for the analysis of

intensive longitudinal data that do not suffer from the issues with the existing models and

better capture the unique features of intensive longitudinal data mentioned previously.

By imposing Gaussian process models (Rasmussen & Williams, 2005) on the latent

curves {θi(t) : t ≥ 0}, a general framework for latent curve modeling is developed. We

call it the Latent Gaussian Process (LGP) models. In contrast to discrete-time models,

the proposed models retain the flexibility of continuous-time models in dealing with

observations in a continuous time domain. In addition, this general framework contains

models that are easier to specify and analyze than SDE-based models.

Technically, the proposed modeling framework can be viewed as a hybrid of the latent

Gaussian process model for functional data analysis (Hall et al., 2008) and the gener-

alized multilevel structural equation modeling framework for longitudinal measurement

(e.g., Chapter 4, Skrondal & Rabe-Hesketh, 2004). As will be shown in the sequel,

many existing latent curve models, whether time is treated as continuous or discrete,

can be viewed as special cases under the proposed general framework. By making use of

mathematical characterizations of Gaussian processes, methods for the parametrization

of LGP models are provided. In addition, parameter estimation and statistical inference
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are carried out under an empirical Bayes framework, using a Stochastic Expectation-

Maximization (StEM) algorithm (Celeux & Diebolt, 1985; Nielsen, 2000; Zhang et al.,

2018).

The rest of the paper is organized as follows. In Section 2, the classical latent curve

models are reviewed under a unified framework of structural equation modeling and then

a new latent Gaussian process modeling framework is introduced that substantially gen-

eralizes the traditional models. The parametrization of latent Gaussian process models

is discussed. Estimation and statistical inference are discussed in Section 3, followed by

the computational details in Section 4. Extension to the incorporation of covariates is

discussed in Section 5. The proposed model is evaluated in Section 6 through simula-

tion studies and further illustrated in Section 7 via a real data example. We end with

concluding remarks in Section 8.

2 Latent Gaussian Process Model

2.1 A Unified Framework for Latent Curve Analysis

We first provide a unified framework for latent curve analysis. We consider N partici-

pants being measured longitudinally within a time interval [0, T ], where time is treated

as continuous. For individual i, let tis ∈ [0, T ] be the time that the sth measurement oc-

curs and Si be the total number of measurements received by individual i. At each time

t = ti1, ..., tiSi
, we observe a random vector Yi(t) = (Yi1(t), ..., YiJ(t))>, where Yij(t) can

be either continuous or categorical, depending on the data type of the jth indicator. In

particular, the corresponding latent curve model is called a single-indicator model when

J = 1 and a multiple-indicator model when J > 1. We denote yi(t) = (yi1(t), ..., yiJ(t))>

as a realization of Yi(t). Moreover, each individual i is associated with a latent curve

θi(·) = {θi(t) : t ∈ [0, T ]}, which can be regarded as a time-varying latent trait. Note
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that the above setting is quite general that includes discrete-time longitudinal data as

a special case, for which the observation time tis takes value in {0, 1, 2, ...}.

The latent curve model consists of two components: (1) a measurement model that

specifies the conditional distribution of {Yi(t) : t = ti1, ..., tiSi
} given {θi(t) : t ∈ [0, T ]},

and (2) a structural model that specifies the distribution of the random function (θi(t) :

t ∈ [0, T ]).

Measurement model. The measurement model assumes that the distribution of

Yi(t) only depends on θi(t), the latent trait level at the same time point, but does not

depend on the latent trait levels or responses at any other time points. More precisely,

it is assumed that

f(yi(ti1), ...,yi(tiSi
)|θi(t), t ∈ [0, T ]) = f(yi(ti1), ...,yi(tiSi

)|θi(ti1), ..., θi(tiSi
)), (1)

where f(yi(ti1), ...,yi(tiSi
)|θi(t), t ∈ [0, T ]) denotes the probability density/mass func-

tion of the conditional distribution of Yi(ti1), ..., Yi(tiSi
) given the entire latent pro-

cess (θi(t) : t ∈ [0, T ]) and f(yi(ti1), ...,yi(tiSi
)|θi(ti1), ..., θi(tiSi

)) denotes the probabil-

ity density/mass function of the conditional distribution of Yi(ti1), ..., Yi(tiSi
) given

θi(ti1), ..., θi(tiSi
). Equation (1) means that the latent trait level at any other time point

is conditionally independent of the observed responses, given the latent trait levels at

the corresponding time points of observation. As visualized in Figure 2, it is further

assumed that the conditional distribution (1) has the following decomposition,

f(yi(ti1), ...,yi(tiSi
)|θi(ti1), ..., θi(tiSi

)) =

Si∏
s=1

g(yi(tis)|θi(tis)), (2)

where g(yi(t)|θi(t)) is the conditional probability density/mass function of Yi(t) given

θi(t). The assumption in (2) is conceptually similar to the widely used local independence
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assumption in latent variable models (see Chapter 4, Skrondal & Rabe-Hesketh, 2004).

Finally, we assume local independence among multiple indicators at each time t, i.e.,

Yi1(t), ..., YiJ(t) are conditionally independent given θi(t). That is

g(yi(t)|θi(t)) =
J∏
j=1

gj(yij(t)|θi(t)), (3)

where gj(yij(t)|θi(t)) specifies the conditional distribution of the jth indicator Yij(t)

given θi(t). The choice of gj depends on the type of the jth indicator. It is worth

noting that the conditional distribution gj does not depend on time t, implying that the

measurement is assumed to be time-invariant. Although commonly adopted in latent

curve models (e.g., Chapter 2, Bollen & Curran, 2006), this assumption is quite strong

and needs to be checked when applying such models to real data.

Figure 2: Path diagram for a unified latent curve model.

We provide several measurement model examples.

1. Linear factor model for continuous response:

Yij(t)|θi(t) ∼ N(ajθi(t) + bj, σ
2
j ), (4)

where aj, bj, and σ2
j are model parameters.
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2. Probit model for ordinal response (Yij ∈ {0, 1, ..., nj}):

P (Yij(t) = l|θi(t)) = Φ (bj,l+1 + ajθi(t))− Φ (bj,l + ajθi(t)) , (5)

where

−∞ = bj,0 < bj,1 < bj,2 < . . . < bj,nj
< bj,nj+1 =∞.

bj,l and aj are model parameters, l ∈ {1, ..., nj} and j = 1, ..., J . When nj = 1,

Yij degenerates to a binary response variable and the model (5) becomes the well-

known two-parameter normal-ogive model in item response theory (Chapter 4,

Embretson & Reise, 2000).

Model (5) can be specified alternatively through the introduction of latent re-

sponses. That is, define latent response

Y ∗ij(t) = −ajθi(t) + εij(t)

where εij(t) is a noise term following a standard normal distribution. Then the

observable response Yij(t) can be viewed as a truncated version of Y ∗ij(t), obtained

by

Yij(t) = l if bj,l ≤ Y ∗ij(t) < bj,l+1.

When the multiple indicators contain a mixture of ordinal and continuous variables,

the above models can be combined to model Yi1(t), ..., YiJ(t), since the measurement

models for different items can be specified independently given the local independence

assumption.

Structural model. The structural model specifies the distribution of the random

function θi(t). We list a few examples below and refer the readers to Bollen & Curran
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(2006) for a comprehensive review.

1. Linear trajectory model:

θi(t) = βi0 + βi1t, (6)

where βi = (βi0, βi1) are individual specific random effects, following a bivariate

normal distribution.

2. Quadratic trajectory model:

θi(t) = βi0 + βi1t+ βi2t
2, (7)

where βi = (βi0, βi1, βi2) are individual specific random effects, following a trivari-

ate normal distribution.

3. Exponential trajectory model:

θi(t) = βi0 + βi1 exp (γt), (8)

where βi = (βi0, βi1) are individual specific random effects, following a bivariate

normal distribution and γ is a fixed effect parameter.

These models assume a simple functional form for θi(t). In particular, the realizations

of θi(t) are restricted to linear, quadratic, and exponential functions for models (6)-(8),

respectively. Such models tend to be effective for non-intensive longitudinal data (typi-

cally less than 10 measurements), but may not be flexible enough when having intensive

longitudinal measurements which provide information in a high temporal resolution. In

the rest of the paper, a general modeling framework is proposed, based on which more

flexible structural models can be constructed.
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2.2 Gaussian Process Structural Model

In what follows, we introduce a new framework for modeling θi(t) as a continuous-time

stochastic process. A key component of this framework is the Gaussian process model.

Definition 1 (Gaussian Process) A time continuous stochastic process X(t) on time

interval [0, T ] is a Gaussian process if and only if for every finite set of time points

t1, ..., tS ∈ [0, T ], (X(t1), ..., X(tS)) is multivariate normal.

We remark that a Gaussian process can be defined more generally on a real line. In

this paper, we focus on Gaussian process on a bounded interval [0, T ], since real longitu-

dinal data are collected within a certain time window. Many widely used stochastic

processes, including the Brownian motion, the Brownian bridge, and the Ornstein-

Uhlenbeck process, are special cases of Gaussian process. Thanks to the flexibility,

nonlinearity, and inherent nonparametric structure, Gaussian processes have been widely

used as a model for random functions for solving regression, classification, and dimension

reduction problems (Chapter 4, Rasmussen & Williams, 2005).

Thanks to the normality, a Gaussian process is completely characterized by two

components: (1) a mean function m(t) = EX(t), and (2) a kernel function K(t, t′) for

the covariance structure, where K(t, t′) = Cov(X(t), X(t′)). We provide a definition of

a kernel function below.

Definition 2 (Kernel Function) A bivariate function K(t, t′) is called a kernel func-

tion if for every finite set of points t1, ..., tS, the matrix (K(ti, tj) : i, j = 1, ..., S) is

positive semidefinite.

Note that since K(t, t′) = Cov(X(t), X(t′)), the matrix (K(ti, tj) : i, j = 1, ..., S) has

to be positive semidefinite, because it is the covariance matrix of (X(t1), ..., X(tS)). On

the other hand, it can be shown that for any kernel function K, there exists a Gaus-

sian process whose covariance structure is given by the kernel (Chapter 4, Rasmussen &
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Williams, 2005). As an illustrative example, Figure 3 shows three independent realiza-

tions from a Gaussian process, with a mean function m(t) = 0 and a squared exponential

kernel function K(t, t′) = exp(−(t− t′)2/(2× 0.52)).

Definition 3 (Gaussian Process Structural Model) We say the structural compo-

nent of a latent curve model follows a Gaussian process structural model, if {θi(t) :

t ∈ [0, T ]} are independent and identically distributed (i.i.d.) Gaussian processes for

i = 1, ..., N .

We remark that the Gaussian process structural model assumption in Definition 3 can

be viewed as an extension of a commonly adopted assumption in unidimensional or mul-

tidimensional item response theory models where individual-specific latent trait or traits

are assumed to be i.i.d. univariate or multivariate normal. The difference is that, rather

than having a random variable or random vector for each individual, each individual

in the proposed model is characterized by a random function, whose distribution is less

straightforward to parameterize.

Combining a Gaussian process structural model and a measurement model as defined

in Section 2.1, we obtain an LGP model. We point out that the examples (6)-(8) are all

special cases of the LGP model. This is because, due to the multivariate normality of the

random effects, for every finite set of time points t1, ..., tS, (θi(t1), ..., θi(tS)) is multivari-

ate normal. In addition, all the SDE based continuous-time latent curve models also fall

into this framework, when the noise component of the SDE is assumed to be Gaussian.

For example, Lu et al. (2015) assume the dynamic latent trait to follow the Ornstein-

Uhlenbeck process (Uhlenbeck & Ornstein, 1930). This process is a Gaussian process

described by a stochastic differential equation with Gaussian noise. Furthermore, when

the latent variables are assumed to be jointly normal, the latent variable-autoregressive

latent trajectory models (see Bianconcini & Bollen, 2018), which are discrete-time mod-
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)
els, can also be viewed as special cases under the current framework.

A Gaussian process is specified by a mean functionm(t) and a kernel functionK(t, t′),

whose choices should be problem specific. We denote the distribution of such a stochastic

process by GP(m,K). In what follows, we discuss the parametrization of Gaussian

process structural models.

2.3 Parametrization of Gaussian Process Structural Model

Following the above discussion, we see that θi(t) = m(t) + θ̄i(t), where θ̄i(t) is Gaussian

process with mean 0 and kernel K(t, t′). This allows us to discuss the modeling of m(t)

and K(t, t′) separately, while in the classical latent curve models (e.g., (6)-(8)) the mean

and kernel are modeled simultaneously. In particular, the mean process m(t) can be

viewed as the mean of θi(t), for individuals from a population of interest. Therefore,

the mean function captures the mean level of the time-varying latent trait, possibly

reflecting the trend and the periodicity of the dynamic latent trait at the population
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level. In addition, the mean zero Gaussian process θ̄i(t) can be viewed as the deviation

from the mean process that is specific to individual i.

Mean function. We consider the parametrization of the mean function m(t), which

is typically assumed to have certain level of smoothness. Specifically, for the linear, the

quadratic, and the exponential trajectory models mentioned in Section 2.1, the mean

functions m(t) take linear, quadratic, and exponential forms.

Under the current framework, m(t) can be parameterized more flexibly. Specifically,

we adopt a parametrization of m(t) using basis functions. That is,

m(t) = α0 + α1b1(t) + · · ·+ αDbD(t), (9)

where b1(t), ..., bD(t) are pre-specified basis functions on [0, T ]. For example, when

polynomial basis functions are used, bd(t) = td, d = 1, 2, ..., D, where D is the degree

of the polynomial function. When cubic spline basis functions are used, b1(t) = t,

b2(t) = t2, b3(t) = t3, and b3+d = (t − ξd)3
+, where d = 1, ..., D − 3, ξd is the dth spline

knot that is pre-specified on [0, T ], and (t−ξd)3
+ = (t−ξd)3 when t > ξd and 0 otherwise.

Alternative basis functions may also be used, such as Fourier basis, wavelets, and other

spline basis functions. We refer the readers to Chapter 3, Ramsay & Silverman (1997)

for a review of different basis functions. We remark that the number of basis functions D

and the choices of basis function may be determined by data through model comparison.

We remark that if the dynamic trait θi(t) is assume to be a stationary process (i.e.,

the joint distribution of θi(t) does not change when the process is shifted in time), then

the mean function does not depend on time t. In that case, the mean function can only

have an intercept parameter, m(t) = α0.
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Parameterizing kernel function. One way to model the mean zero Gaussian process

θ̄i(t) is by directly parameterizing the kernel function. In fact, different parametric kernel

functions are available in the literature. We refer the readers to (Chapter 4, Rasmussen

& Williams, 2005) for a review. In what follows, we provide a few examples of kernel

functions, with a focus on kernels that lead to stationary mean zero Gaussian processes.

For such a kernel function K(t, t′), the value of K(t, t′) only depends on the time lag

|t − t′|, not the specific values of t and t′. A stationary kernel should be used if the

distribution of θ̄i(t) is believed to be invariant when the process is shifted in time.

1. Squared exponential (SE) kernel:

K(t, t′) = c2 exp

(
−(t− t′)2

2κ2

)
, (10)

where c > 0 and κ > 0 are two model parameters, known as the scale and the

length scale parameters, respectively.

2. Exponential kernel:

K(t, t′) = c2 exp

(
−|t− t

′|
2κ2

)
, (11)

where c > 0 and κ > 0 are two model parameters that play similar roles as the

ones in the SE kernel above.

3. Periodic kernel (MacKay, 1998):

K(t, t′) = c2 exp

(
−2 sin2(π|t− t′|/p)

κ2

)
, (12)

where c > 0 and κ > 0 are two model parameters that play similar roles as the ones

in the two kernels above and p is known as the period parameter which determines

the periodicity of the kernel function.
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Mean zero Gaussian processes with different kernel functions have different proper-

ties. For example, the mean zero Gaussian processes with an SE kernel tend to have

smooth pathes. In fact, a mean zero Gaussian process with the SE kernel is classified

as one of the most smooth stochastic processes, according to the notion of mean square

differentiability (Chapter 1, Adler, 1981), a classical quantification of the smoothness

of stochastic processes. This kernel function is widely used in statistical applications

of Gaussian process. It will be further discussed in the sequel and be used in the data

analysis.

An alternative way of parameterizing the kernel is by directly modeling the mean zero

Gaussian process, which can be done by using a linear basis function model. Specifically,

let φ1(t), ..., φH(t) be H pre-specified basis functions on [0, T ], such as spline basis,

Fourier basis, or wavelet basis functions. The theory of functional principal component

analysis provides an idea on choosing better basis functions (e.g., Hall et al., 2008).

Given the basis functions, the linear basis function model assumes that

θ̄i(t) =
H∑
h=1

ωhZihφh(t), (13)

where ωh, h = 1, ..., H, are model parameters and Zih, h = 1, ..., H, are i.i.d. standard

normal random variables. The model (13) yields

K(t, t′) =
H∑
h=1

ω2
hφh(t)φh(t

′).

For finite H, this parametrization approach typically leads to a non-stationary kernel

function. Making use of the theory of reproducing kernel Hilbert space, essentially any

mean zero Gaussian process can be approximated by the form of (13) for sufficiently

large H.
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Squared exponential kernel. We further discuss on the properties of the SE kernel.

According to (10), V ar(θi(t)) = K(t, t) = c2. The scale parameter c thus captures the

overall variation of the Gaussian process in the long run. Moreover, the length-scale

parameter κ captures the short-term temporal dependence. More precisely, the correlation

between θi(t) and θi(t
′) is given by

Cor(θi(t), θi(t
′)) =

Cov(θi(t), θi(t
′))√

(V ar(θi(t))× V ar(θi(t′)))
= exp

(
−(t− t′)2

2κ2

)
.

As shown in Figure 4, for each value of κ, the correlation decays towards zero as the time

lag increases. The decaying rate is determined by the value of κ. In particular, when the

time lag |t − t′| > 2κ, the correlation is smaller than exp(−2) = 0.14. Moreover, for a

given time lag, a smaller value of κ implies a smaller correlation. Figure 5 shows sample

paths from three Gaussian processes with mean zero and SE kernels. Specifically, in

panel (a), c = 1, κ = 0.5, in (b), c = 1, κ = 2, and in (c), c = 2, κ = 2. Panels (a) and

(b) only differ by the values of the κ parameter and the paths in panel (a) are from a

Gaussian process with a smaller value of κ. The paths in panel (a) are more wiggly (i.e.,

have more short-term variation) than those in panel (b), since the Gaussian process in

panel (a) has less temporal dependence. Panels (b) and (c) only differ by the values of

c, due to which the paths in panel (c) have more variation in the long run.

Identifiability of the model parameters Like many other structural equation mod-

els, constraints are needed to ensure model identifiability. In particular, two constraints

are needed, one to fix the scale of the latent process and the other to avoid mean shift.

For instance, we consider a model combining the mean function (9), the measurement

model (4), and the SE kernel (10). To fix the scale in this model, we can either fix the

scale parameter c = 1 in (10) or the first loading parameter a1 = 1 in (3). In addition,

to avoid mean shift, we can set either α0 = 0 in (9) or b1 = 0 in (4).
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Figure 5: Sample paths from three Gaussian processes with mean 0 and SE kernels. The
SE kernels differ by their values of the c and the κ parameters.
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3 Inference under LGP Model

The statistical inference under the proposed model can be classified into two levels,

the population level and individual level. Both levels of inference may be of interest

in the latent curve analysis. The population level inference considers the estimation of

the parameters in both the measurement and structural models. The individual level

inference focuses on the posterior distribution of θi(t) given data from each individual

i when the measurement and the structural models are known (e.g. obtained from the

population level inference).

Population level inference. We use Ψ to denote all the model parameters, including

parameters from both the measurement and structural models. As mentioned above,

constraints may be imposed on Ψ to ensure model identifiability. Our likelihood function

can be written as

L(Ψ) =
N∏
i=1

∫ Si∏
s=1

J∏
j=1

gj(yij(tis)|θis)fi(θi1, ..., θiSi
)dθi1...dθiSi

, (14)

where fi(θi1, ..., θiSi
) is the density function of an Si-variate normal distribution with

mean (m(ti1), · · ·m(tiSi
)) and covariance matrix (K(t, t′) : t, t′ = ti1, ..., tiSi

). Note that

this likelihood function is the marginal likelihood of data in which the latent curves are in-

tegrated out. The maximum likelihood estimator of Ψ is defined as Ψ̂ = arg maxΨ L(Ψ),

whose computation is discussed in Section 4. We then obtain the estimated mean and

kernel functions by plugging in Ψ̂.

Individual level inference. Similar to the classical latent curve analysis, the current

modeling framework also allows for statistical inference on the latent curve of each

individual. For ease of exposition, we assume both the measurement and the structural
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models are known when making individual level inference. In practice, we can first

estimate the model parameters and then treat the estimated model as the true one in

making the individual level inference. For individual i, whether or not measurement

occurs at time t∗, one can infer on θi(t
∗) based on the posterior distribution of θi(t

∗)

given yi(ti1), ...,yi(tiSi
). By sweeping t∗ over the entire interval [0, T ], one obtains the

posterior mean of θi(t) as a function of t, which serves as a point estimate of individual

i’s latent curve. When calculated under the estimated model, we call the posterior

mean of θi(t) the Expected A Posteriori (EAP) estimate of individual i’s latent curve

and denote it by θ̂i(t). It mimics the EAP estimate of an individual’s latent trait level

in item response theory (e.g. Embretson & Reise, 2000).

4 Computation

In this section, we elaborate on the computational details.

4.1 Individual Level Inference

We first discuss computing the posterior distribution of θi(t
∗) given yi(ti1), ...,yi(tiSi

),

for any time t∗, when both the measurement and the structural models are given. We

denote the density of this posterior distribution by h(θ|yi(ti1), ...,yi(tiSi
)). Following

equation (1) of the measurement model, θi(t
∗) and (Yi(ti1), ...,Yi(tiSi

)) are conditionally

independent given (θi(ti1), ..., θi(tiSi
)). Consequently,

h(θ|yi(ti1), ...,yi(tiSi
))

=

∫
h1(θ|θ1, ..., θSi

)h2(θ1, ..., θSi
|yi(ti1), ...,yi(tiSi

))dθ1...dθSi
,

(15)
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where h1(θ|θ1, ..., θSi
) denotes the conditional distribution of θi(t

∗) given (θi(ti1), ..., θi(tiSi
))

and h2(θ1, ..., θSi
|yi(ti1), ...,yi(tiSi

)) denotes the posterior distribution of (θi(ti1), ..., θi(tiSi
))

given the observed responses. Specifically, since (θi(t
∗), θi(ti1), ..., θi(tiSi

) follows a mul-

tivariate normal distribution with mean (m(t∗),m(ti1), ...,m(tiSi
)) and covariance ma-

trix (K(t, t′) : t, t′ = t∗, ti1, ..., tiSi
), h1(θ|θ1, ..., θSi

) is still normal, for which the mean

µ(θ1, ..., θSi
) and variance σ2(θ1, ..., θSi

) have analytic forms. Specifically,

µ(θ1, ..., θSi
) = m(t∗) + Σ12Σ−1

22 (θ − µ) and σ2(θ1, ..., θSi
) = K(t∗, t∗)− Σ12Σ−1

22 Σ21,

where θ = (θ1, ..., θSi
)>, µ = (m(ti1), ...,m(tiSi

))>, Σ12 = (K(t∗, ti1), ..., K(t∗, tiSi
)),

Σ22 = (K(t, t′) : t, t′ = ti1, ..., tiSi
), and Σ21 = Σ>12. Then the posterior mean of θi(t

∗) is

given by ∫
µ(θ1, ..., θSi

)h2(θ1, ..., θSi
|yi(ti1), ...,yi(tiSi

))dθ1...dθSi
. (16)

In addition, the α-level quantile of the posterior distribution is given by

∫
(µ(θ1, ..., θSi

) + zασ(θ1, ..., θSi
))h2(θ1, ..., θSi

|yi(ti1), ...,yi(tiSi
))dθ1...dθSi

, (17)

where zα is the α-level quantile of a standard normal distribution.

Under the linear factor model (6), (θi(t
∗), θi(ti1), ..., θi(tiSi

),Yi(ti1), ...,Yi(tiSi
)) are

jointly normal. Consequently, (15)-(17) have analytical forms. Under other measurement

models, (16) and (17) can be approximated by using Monte Carlo samples from the

posterior distribution h2(θ1, ..., θSi
|yi(ti1), ...,yi(tiSi

)). Specifically, let (θ
(l)
1 , ..., θ

(l)
Si

), l =

1, ..., L, be L Monte Carlo samples. Then we approximate the mean and α-level quantile
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of the posterior distribution of θi(t
∗) by

1

L

L∑
l=1

µ(θ
(l)
1 , ..., θ

(l)
Si

),

1

L

L∑
l=1

µ(θ
(l)
1 , ..., θ

(l)
Si

) + zασ(θ
(l)
1 , ..., θ

(l)
Si

).

(18)

Markov chain Monte Carlo (MCMC) methods can be used to obain Monte Carlo samples

from the posterior distribution h2(θ1, ..., θSi
|yi(ti1), ...,yi(tiSi

)). For example, a Gibbs

sampler is developed that efficiently samples from this posterior distribution under the

probit model (5) for ordinal response data. This sampler, described as follows, makes

use of the latent response formulation of the probit model (5).

Step 1: For i = 1, ..., N, j = 1, ..., J , s = 1, ..., Si, sample y∗ij(tis) from a trun-

cated normal distribution that truncates a normal distribution N(−aj θ̃i(tis), 1) by

interval [dj,yij(tis), dj,yij(tis)+1], where θ̃i(tis) is some initial value of θi(tis).

Step 2: For i = 1, ..., N,, given y∗ij(tis)s, we update (θ̃i(ti1), ..., θ̃i(tiSi
)), by sampling

from

h3(θ1, ..., θSi
|y∗i (ti1), ...,y∗i (tiSi

)),

where y∗i (t) = (y∗i1(t), ..., y∗iJ(t)) and h3 denotes the conditional distribution of

(θi(ti1), ..., θi(tiSi
)) given the ideal responses y∗i (ti1), ...,y∗i (tiSi

). It is worth noting

that this conditional distribution is multivariate normal, because θi(ti1), ..., θi(tiSi
),

y∗i (ti1), ..., y∗i (tiSi
) are jointly normal. The observed data yi(ti1), ..., yi(tiSi

) are

not conditioned upon, because θi(ti1), ..., θi(tiSi
) are conditionally independent of

the observed data when given the latent responses y∗i (ti1), ..., y∗i (tiSi
).

We point out that both steps can be efficiently computed, because step 1 only involves

sampling from univariate truncated normal distributions and step 2 only involves sam-
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pling from multivariate normal distributions. Well-developed samplers exist for both

steps.

4.2 Population Level Inference

We now discuss the computation for maximizing the likelihood function (14). Under

the linear factor model (6), the Expectation-Maximization (EM) algorithm (Dempster

et al., 1977) is used to optimize (14), where the E-step is in a closed form due to the

joint normality of data and latent variables. The implementation of this EM algorithm

is standard and thus we omit the details here.

Under other measurement models, the classical EM algorithm is typically compu-

tationally infeasible when the number of time points is large, in which case the E-step

of the algorithm involves a high-dimensional integral that does not have an analytical

form. We adopt a stochastic EM (StEM) algorithm (Celeux & Diebolt, 1985; Diebolt

& Ip, 1996; Zhang et al., 2018) which avoids the numerical integration in the E-step

of the standard EM algorithm (Dempster et al., 1977; Bock & Aitkin, 1981) by Monte

Carlo simulations. The convergence properties of the StEM algorithm are established

in Nielsen (2000). Similar to the EM algorithm, the StEM algorithm iterates between

two steps, the StE step and the M step. Let Ψ(0) be the initial parameter values and

(θ̃
(0)
i1 , · · · , θ̃

(0)
iSi

), i = 1, ..., N, be the initial values of person parameters. In each step l

(l ≥ 1), the following StE step and M step are performed.

StE step: For i = 1, ..., N , sample (θ̃
(l)
i1 , · · · , θ̃

(l)
iSi

) from

h2(θ1, ..., θSi
|yi(ti1), ...,yi(tiSi

); Ψ(l−1)),

the conditional distribution of (θi(ti1), · · · , θi(tiSi
)) given (yi(ti1), ...,yi(tiSi

)) under

parameters Ψ(l−1). For the probit model (5), we use the Gibbs sampler described
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in Section 4.1 to sample from h2(θ1, ..., θSi
|yi(ti1), ...,yi(tiSi

); Ψ(l−1)).

M step: Obtain parameter estimate

Ψ(l) = arg max
Ψ

N∑
i=1

l(yi(ti1), ...,yi(tiSi
), θ̃

(l)
i1 , · · · , θ̃

(l)
iSi

; Ψ), (19)

where

l(yi(ti1), ...,yi(tiSi
), θ̃

(l)
i1 , · · · , θ̃

(l)
iSi

; Ψ)

=

Si∑
s=1

[
J∑
j=1

log gj(yij(tis)|θ̃(l)
is )

]
+ log fi(θ̃

(l)
i1 , ..., θ̃

(l)
iSi

)
(20)

is the complete data log-likelihood of a single observation. Note that gj and fi

are defined in (3) and (14), respectively, containing model parameters. In our

implementation, the optimization is done using the L-BFGS-B algorithm (Liu &

Nocedal, 1989).

The final estimate of Ψ is given by the average of Ψ(l)s from the last m iterations, i.e.,

Ψ̂ =
1

m

m0+m∑
l=m0+1

Ψ(l). (21)

As shown in Nielsen (2000), Ψ̂ can approximate the maximum likelihood estimator

sufficiently accurately, when m0 and m are large enough.

5 Incorporation of Covariates

In practice, individual specific covariates are often collected and incorporated into the

latent curve analysis. As visualized in the path diagram in Figure 6, covariates xi can be

further added to the structural model to explain how the distribution of the latent curves

depends on the covariates. A specific type of covariates of interest is group membership,
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such as experimental versus control and female versus male. Latent curve analysis that

incorporates discrete group membership as covariates in the structural model is referred

to as the analysis of groups (Chapter 6, Bollen & Curran, 2006).

Figure 6: Path diagram of a latent curve model with covariates.

Covariates can be easily handled under the proposed framework. For example, when

discrete group membership may affect the mean function of the latent curve, we let

parameters in m(t) to be group-specific. Similarly, we may also allow parameters in

K(t, t′) to depend on the group membership. Quantitative covariates, such as age, can

also be incorporated into the current model. The mean and kernel functions are denoted

by mxi
(t) and Kxi

(t, t′) when they depend on the covariates. The tools for the inference

and computation discussed above can be easily generalized.

6 Simulation

The proposed modeling framework and the estimation procedures are further evaluated

by simulation studies.

25



6.1 Study I

We first evaluate the parameter recovery using the EM algorithm, under a setting similar

to the real data example in Section 7, except that a single group is considered in this

study. In particular, it is assumed that each participant is measured for 25 consecutive

days, with four measurements per day. Such a design results in 100 times of measure-

ment. The time points of the four measurements are randomly sampled within a day.

And we consider a measurement model with a single indicator. More precisely, given

the observation time, the model is specified as follows.

Yi1(t)|θi(t) ∼ N(θi(t), σ
2),

θi(·) ∼ GP (m,K),

where m(t) = α and K(t, t′) = c2 exp(−(t− t′)2/(2κ2)). The true model parameters are

specified in Table 1. Two sample sizes are considered, including N = 50 and N = 100.

The simulation under each sample size is repeated for 100 times, based on which the

mean squared error (MSE) for parameter estimation is calculated. According to the

MSE for parameter estimation presented Table 1, the parameter estimation is very

accurate under the current simulation settings and the estimation accuracy improves as

the sample size increases.

We further illustrate the performance of the individual level inference based on the

L2 distance between θi(t) and its EAP estimate θ̂i(t), where the distance is defined as

di =

√∫ T

0

(θi(t)− θ̂i(t))2dt.

In particular, di quantifies the inaccuracy of estimating the latent curve θi(t) by θ̂i(t).
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α c2 κ σ2

True 1.5 0.4 0.3 0.1

MSE(N = 50) 2.7× 10−4 2.2× 10−4 1.7× 10−4 1.3× 10−5

MSE(N = 100) 1.2× 10−4 9.2× 10−5 1.5× 10−4 1.2× 10−5

Table 1: Simulation Study I: Simulation results on the parameter recovery for an LGP
model with a linear factor measurement model.

The L2 distance between θi(t) and α̂,

ei =

√∫ T

0

(θi(t)− α̂)2dt,

is used as a reference for di that quantifies the inaccuracy of estimating θi(t) by the

estimate of the population mean α̂. The ratio di/ei serves as a measure of inaccuracy in

estimating the latent curve of individual i, in which the difficulty in estimating the curve

has been taken into account by the denominator ei. The smaller the ratio is, the more

accurate the latent curve θi(t) is estimated in a relative sense (relative to the overall

difficulty in estimating θi(t) measured by ei).

In panel (a) of Figure 7, we show the histogram of the ratios di/ei for all individuals

from a randomly selected dataset among all replications when the sample size N = 100.

As we can see, di is much smaller than ei, implying that θ̂i(t) estimates θi(t) very

accurately. Panels (b)-(d) of Figure 7 show θi(t), θ̂i(t), as well as α̂ for three randomly

selected individuals from the same dataset. According to these plots, the true latent

curves are well approximated by their EAP estimates.

6.2 Study II

We now consider a simulation study whose setting is the same as Study I except for

a different measurement model component. In particular, we consider ordinal response
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ual with di/ei = 0.20

Figure 7: Simulation Study I: Results on individual level inference.
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data generated by the probit model (5). Specifically, the measurement at each time point

is assumed to be based on five polytomous items, each with three ordinal categories (i.e.,

nj = 3). The true model parameters are given in Table 2. Note that we fix a1 = 1 and

d1,1 = 0 in both the true model and the estimation procedure for model identifiability.

The simulation under each sample size is repeated for 100 times. For each simu-

lated dataset, the model parameters are estimated using the stochastic EM algorithm

described in Section 4.2, based on a random initial value. The two tuning parameters

m0 and m of the algorithm are set to be 100 and 200, respectively. The estimation accu-

racy measured by mean squared error is shown in Table 2, which indicates an accurate

estimation result. The running time of the stochastic EM algorithm for one dataset with

N = 100 is around 10 minutes1. It can be further speeded up by parallel computing.

Finally, we examine the recovery of the individual latent curves, measured by the

L2 distance ratio di/ei defined in Study I. The EAP estimates of the individual curves

are obtained by Monte Carlo approximation (18), where L = 100 Monte Carlo samples

are used. In particular, the histogram of di/ei, i = 1, ..., N , is presented in Figure 8, for

a randomly selected dataset among all replications under N = 100. According to the

histogram, di is much smaller than ei, though the ratios tend to be larger than those

in Study I. It implies that, under the current setting, the EAP estimate θ̂i(t) is still

substantially more accurate than the population mean α̂ in estimating all individuals’

latent curves.

1The study is conducted on a personal computer with specifications: Processor 2.2 GHz Intel Core
i7; Memory 8 GB 1600 MHz DDR3.
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a1 a2 a3 a4 a5

True 1.00 1.00 0.65 0.62 0.53

MSE(N=50) · 1.7× 10−3 7.9× 10−4 5.6× 10−4 4.1× 10−4

MSE(N=100) · 7.5× 10−4 3.2× 10−4 2.7× 10−4 2.1× 10−4

d1,1 d2,1 d3,1 d4,1 d5,1

True 0.00 0.45 -0.25 -0.27 0.34

MSE(N=50) · 1.4× 10−3 6.2× 10−4 7.6× 10−4 6.5× 10−4

MSE(N=100) · 6.9× 10−4 3.3× 10−4 3.5× 10−4 3.8× 10−4

d1,2 d2,2 d3,2 d4,2 d5,2

True 1.84 1.45 0.44 1.37 1.55

MSE(N=50) 1.7× 10−3 2.1× 10−3 6.9× 10−4 1.0× 10−3 1.1× 10−3

MSE(N=100) 6.7× 10−4 1.2× 10−3 4.3× 10−4 5.5× 10−4 5.4× 10−4

α κ c2

True -0.79 0.30 1.27

MSE(N=50) 1.6× 10−3 2.9× 10−4 2.0× 10−3

MSE(N=100) 1.1× 10−3 3.0× 10−4 9.3× 10−4

Table 2: Simulation Study II: Simulation results on the parameter recovery accuracy for
an LGP model with a probit measurement model component.
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Figure 8: Simulation Study II: Histogram of the ratios di/ei for all individuals from a
randomly selected dataset under N = 100.
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7 Analysis of Negative Mood in BPD and MDD/DYS

Patients

We analyze data from a study of the affective instability in borderline personality dis-

order (Trull et al., 2008) that collected ecological momentary assessment data from

psychiatric outpatients with borderline personality disorder (BPD) and with major de-

pressive disorder (MDD) or dysthymic disorder (DYS). The participants were recruited

from one of four community mental health outpatient clinics through flyers. The dataset

has been analyzed in Jahng et al. (2008) and is downloaded from http://dx.doi.org/

10.1037/a0014173.supp. The data contain 84 participants: 46 who met DSM-IV-TR

(American Psychiatric Association, 2000) diagnostic criteria for BPD and who endorsed

the diagnostic feature of affective instability; and 38 who met DSM-IV-TR diagnostic

criteria for current MDD or DYS and did not report affective instability.

This dataset contains, for each time and each participant, a negative affect com-

posite score based on 21 items from the Positive and Negative Affect Scales-Extended

Version (Watson & Clark, 1999). The participants were measured multiple times a day

over approximately 4 weeks of consecutive days. As commonly encountered in EMA

data, the number of days of assessments per person and the number of assessments per

day differed (days per person: median = 29, interquartile range = 2; assessments per

day: median = 5, interquartile range = 1). In total, the participants received 76 to

186 assessments (median = 153, interquartile range = 24) per person were conducted.

Table 3 illustrates the data structure, where the five columns show the individual ID,

the negative affect composite score, the group membership (xi = 0 for the MDD/DYS

group, xi = 1 for the BPD group), the study time, and the calendar time, respectively.

In particular, the study time uses day as the time unit and sets 00:00 of the first day

receiving measurement as time 0 for each individual. Figure 9 visualizes the data from a
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ID Score Group Study Time Calendar Time

1 1.19 0 0.74 2005-03-18 17:40:00

1 1.81 0 1.52 2005-03-19 12:24:38

1 1.38 0 1.63 2005-03-19 15:06:36

1 1.86 0 1.66 2005-03-19 15:49:34
...

...
...

...
...

Table 3: An illustration of the EMA data from the mood study of BPD and MDD/DYS
patients.

MDD/DYS patient and that from a BPD patient, where the individuals receive different

numbers of measurement, at different and unequally spaced time points.

Following the research question of Jahng et al. (2008), we investigate, by making

use of the proposed latent Gaussian process model, whether the BPD group suffers from

more temporal negative mood instability than the MDD/DYS group. We also investigate

the mean of the negative mood of the two groups. To answer these questions under the

latent Gaussian process modeling framework, we treat the negative affect composite

score as a continuous variable and adopt a single-indicator linear factor measurement

model. In addition, we assume the mean and the kernel functions of the latent Gaussian

process are group specific. Specifically, the model is specified as follows.

Yi1(t)|θi(t) ∼ N(θi(t), σ
2),

θi(·)|xi ∼ GP (mxi , Kxi),

where m0(t) = α0, m1(t) = α1, K0(t, t′) = c2
0 exp (−(t− t′)2/(2κ2

0)), and K1(t, t′) =

c2
1 exp (−(t− t′)2/(2κ2

1)). Under these assumptions, the Gaussian process for each group

is stationary. According to the recruitment design of the study, the stationarity assump-

tion seems reasonable.

The main results are shown in Table 4, including parameter estimates obtained from

the EM algorithm and their 95% bootstrap confidence interval (Chapter 6, Efron &
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Figure 9: An illustration of the EMA data, where panels (a) and (b) show the negative
affect composite score (y-axis) versus the study time (x-axis) from a MDD/DYS patient
and a BPD patient, respectively.
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Tibshirani, 1993). The bootstrap results are obtained by resampling individuals with

replacement. In particular, an estimate of the variance due to the measurement error

is σ̂2 = 0.091, which is much smaller than ĉ2
0 = 0.234 and ĉ2

1 = 0.440, the overall

variations of the two Gaussian processes. In addition, the two groups only significantly

differ by the overall long-run variations, with a difference ĉ2
1 − ĉ2

0 = 0.206 which has

a corresponding 95% bootstrap confidence interval (0.010, 0.407). That is, the BPD

group has more variation in the long run than the MDD/DYS group, which is consistent

with the existing knowledge these mental health disorders. Their overall mean scores

are not significantly different, for which the difference is α̂1 − α̂0 = 0.081 and a 95%

confidence interval (−0.106, 0.275). Similarly, the two groups do not significantly differ

in terms of the short-term temporal dependence, evidenced by κ̂1 − κ̂0 = 0.012 and its

95% confidence interval (−0.039, 0.060).

In addition to the estimation of the model parameters, the proposed modeling frame-

work allows us to make inference at the individual level. To demonstrate, in Figure 10,

we show the posterior mean and the posterior 2.5% and 97.5% quantiles of θi(t), as

well as the corresponding response process, of four participants, two of whom are from

the MDD/DYS group and the other two from the BPD group. The calculation of the

posterior mean and the posterior quantile for θi(t) is described in Section 4. As we can

see, the posterior mean of θi(t) is quite smooth and captures the overall trend of the

response process. In addition, the confidence band, given by the posterior 2.5% and

97.5% quantiles of θi(t), becomes wide when two subsequent measurements have a long

time lag. For example, participant 35 from the BPD group did not have measurement

from the 11th to the 13th day and from the 22nd to the 27th day. That is why the wide

confidence bands are observed in panel (d) within the corresponding intervals. When

there are multiple measurements occur around a single time point t, the posterior vari-

ance at time t can be close to 0 and consequently the corresponding posterior mean and
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α̂0 α̂1 ĉ2
0 ĉ2

1 κ̂0 κ̂1 σ̂2

Point estimate 1.549 1.630 0.234 0.440 0.237 0.249 0.091

95% CI lower bound 1.436 1.476 0.154 0.273 0.192 0.201 0.071

95% CI upper bound 1.658 1.793 0.304 0.608 0.272 0.281 0.112

Table 4: Results from fitting an LGP model to the EMA data from a mood study of
BPD and MDD/DYS patients.

posterior 2.5% and 97.5% quantiles are close to each other.

8 Concluding Remarks

In this paper, we introduce the latent Gaussian process model as a general family of

continuous-time latent curve models. This new model complements the existing models

for the analysis of intensive longitudinal data. The proposed model decomposes the

latent curve analysis into a measurement model component and a structural model

component. The measurement component captures the conditional distribution of an

individual’s observed data given his/her latent curve in a continuous time domain and

the structural component models the distribution of the latent curve. It is shown that

many existing latent curve models are special cases of the proposed one.

In particular, a Gaussian process model is proposed for the modeling of latent curves

in the structural model component. By making use of the mathematical properties of

Gaussian processes, the modeling of the structural component is further decomposed

into separate modeling of the mean function and the Kernel function of a Gaussian

process. Estimation and statistical inference are further discussed under an empirical

Bayes framework, where inference is considered at both population and individual levels.

The proposed model and methods are further illustrated through simulation studies

and a real data example. In particular, our analysis of the negative mood of BPD and

MDD/DYS patients reveals that the main difference between the two groups is due to
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(d) Participant 35 (from the BPD group)

Figure 10: The posterior mean and the posterior 2.5% and 97.5% quantiles of θi(t), as
well as the corresponding response process, of four participants. Participants in panels
(a) and (b) are from the MDD/DYS group and participants in panels (c) and (d) are
from the BPD group.
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the BPD group having significantly higher long-term variation, while the two groups

are not significantly different in the mean negative affect levels and in the short-term

temporal dependence.

The proposed framework leads to many new directions, which are left for future in-

vestigation. First, it is often of interest to measure multiple correlated dynamic latent

traits, in which case θi(t) becomes a vector at each time point t. The current framework

can be easily extended to that setting, by adopting a multidimensional measurement

model (e.g., multidimensional item response theory model) and a multivariate Gaus-

sian process model for the structural component. Second, many intensive longitudinal

studies involve not only measurement but also interventions (e.g., treatment of mental

health disorders). Interventions can be viewed as time-dependent covariates which can

be incorporated into the structural component of the proposed model. By estimating the

coefficients associated with the intervention covariates, the intervention effects can be

evaluated dynamically. Finally, the psychometric properties of the proposed model re-

main to be studied, such as the detection of differential item functioning, the assessment

of model goodness-of-fit, and the evaluation of measurement reliability.
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