Davies, Ewan, Jenssen, Matthew, Perkins, Will and Roberts, Barnaby
(2017)
Independent sets, matchings, and occupancy fractions.
Journal of the London Mathematical Society, 96 (1).
pp. 47-66.
ISSN 0024-6107
Abstract
We prove tight upper bounds on the logarithmic derivative of the independence and matching polynomials of d-regular graphs. For independent sets, this theorem is a strengthening of Kahn's result that a disjoint union of copies of Kd;d maximizes the number of independent sets of a bipartite d-regular graph, Galvin and Tetali's result that the independence polynomial is maximized by the same, and Zhao's extension of both results to all d-regular graphs. For matchings, this shows that the matching polynomial and the total number of matchings of a d-regular graph are maximized by a union of copies of Kd;d. Using this we prove the asymptotic upper matching conjecture of Friedland, Krop, Lundow, and Markstrom. In probabilistic language, our main theorems state that for all d-regular graphs and all �, the occupancy fraction of the hard-core model and the edge occupancy fraction of the monomer-dimer model with fugacity � are maximized by Kd;d. Our method involves constrained optimization problems over distributions of random variables and applies to all d-regular graphs directly, without a reduction to the bipartite case. Using a variant of the method we prove a lower bound on the occupancy fraction of the hard-core model on any d-regular, vertex-transitive, bipartite graph: the occupancy fraction of such a graph is strictly greater than the occupancy fraction of the unique translationinvariant hard-core measure on the infinite d-regular tree
Actions (login required)
|
View Item |