Library Header Image
LSE Research Online LSE Library Services

Digital morphogenesis via Schelling segregation

Barmpalias, George, Elwes, Richard and Lewis-Pye, Andrew (2018) Digital morphogenesis via Schelling segregation. Nonlinearity, 31 (4). 1593 - 1638. ISSN 0951-7715

Text - Accepted Version
Download (2MB) | Preview

Identification Number: 10.1088/1361-6544/aaa493


Schelling’s model of segregation looks to explain the way in which particles or agents of two types may come to arrange themselves spatially into configurations consisting of large homogeneous clusters, i.e. connected regions consisting of only one type. As one of the earliest agent based models studied by economists and perhaps the most famous model of self-organising behaviour, it also has direct links to areas at the interface between computer science and statistical mechanics, such as the Ising model and the study of contagion and cascading phenomena in networks. While the model has been extensively studied it has largely resisted rigorous analysis, prior results from the literature generally pertaining to variants of the model which are tweaked so as to be amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory. In [5], Brandt, Immorlica, Kamath and Kleinberg provided the first rigorous analysis of the unperturbed model, for a specific set of input parameters. Here we provide a rigorous analysis of the model’s behaviour much more generally and establish some surprising forms of threshold behaviour, notably the existence of situations where an increased level of intolerance for neighbouring agents of opposite type leads almost certainly to decreased segregation.

Item Type: Article
Official URL:
Additional Information: © 2018 IOP Publshing
Divisions: Mathematics
Subjects: Q Science > QA Mathematics
Date Deposited: 17 Jan 2018 14:41
Last Modified: 15 May 2024 23:12

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics