Library Header Image
LSE Research Online LSE Library Services

FENNEL: streaming graph partitioning for massive scale graphs

Tsourakakis, Charalampos, Gkantsidis, Christos, Radunovic, Bozidar and Vojnovic, Milan (2014) FENNEL: streaming graph partitioning for massive scale graphs. In: Proceedings of the 7th ACM international conference on Web search and data mining - WSDM '14. ACM Press, New York, NY, pp. 333-342. ISBN 9781450323512

Full text not available from this repository.
Identification Number: 10.1145/2556195.2556213


Balanced graph partitioning in the streaming setting is a key problem to enable scalable and efficient computations on massive graph data such as web graphs, knowledge graphs, and graphs arising in the context of online social networks. Two families of heuristics for graph partitioning in the streaming setting are in wide use: place the newly arrived vertex in the cluster with the largest number of neighbors or in the cluster with the least number of non-neighbors. In this work, we introduce a framework which unifies the two seemingly orthogonal heuristics and allows us to quantify the interpolation between them. More generally, the framework enables a well principled design of scalable, streaming graph partitioning algorithms that are amenable to distributed implementations. We derive a novel one-pass, streaming graph partitioning algorithm and show that it yields significant performance improvements over previous approaches using an extensive set of real-world and synthetic graphs. Surprisingly, despite the fact that our algorithm is a one-pass streaming algorithm, we found its performance to be in many cases comparable to the de-facto standard offline software METIS and in some cases even superiror. For instance, for the Twitter graph with more than 1.4 billion of edges, our method partitions the graph in about 40 minutes achieving a balanced partition that cuts as few as 6.8% of edges, whereas it took more than 81/2 hours by METIS to produce a balanced partition that cuts 11.98% of edges. We also demonstrate the performance gains by using our graph partitioner while solving standard PageRank computation in a graph processing platform with respect to the communication cost and runtime.

Item Type: Book Section
Official URL:
Additional Information: © 2014 The Authors
Divisions: Statistics
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Date Deposited: 23 Nov 2017 14:22
Last Modified: 25 May 2024 06:15

Actions (login required)

View Item View Item