Davies, Ewan, Jenssen, Matthew, Roberts, Barnaby and Perkins, Will
(2017)
Tight bounds on the coefficients of partition functions via stability.
Electronic Notes in Discrete Mathematics, 61.
pp. 317-321.
ISSN 1571-0653
Abstract
We show how to use the recently-developed occupancy method and stability results that follow easily from the method to obtain extremal bounds on the individual coefficients of the partition functions over various classes of bounded degree graphs. As applications, we prove new bounds on the number of independent sets and matchings of a given size in regular graphs. For large enough graphs and almost all sizes, the bounds are tight and confirm the Upper Matching Conjecture of Friedland, Krop, and Markström, and a conjecture of Kahn on independent sets for a wide range of parameters. Additionally we prove tight bounds on the number of q-colorings of cubic graphs with a given number of monochromatic edges, and tight bounds on the number of independent sets of a given size in cubic graphs of girth at least 5.
Actions (login required)
|
View Item |