Cookies?
Library Header Image
LSE Research Online LSE Library Services

Function learning from interpolation

Anthony, Martin ORCID: 0000-0002-7796-6044 and Bartlett, Peter L. (2000) Function learning from interpolation. Combinatorics, Probability and Computing, 9 (3). pp. 213-225. ISSN 0963-5483

[img]
Preview
PDF - Published Version
Download (482kB) | Preview

Abstract

In this paper, we study a statistical property of classes of real-valued functions that we call approximation from interpolated examples. We derive a characterization of function classes that have this property, in terms of their ‘fat-shattering function’, a notion that has proved useful in computational learning theory. The property is central to a problem of learning real-valued functions from random examples in which we require satisfactory performance from every algorithm that returns a function which approximately interpolates the training examples.

Item Type: Article
Official URL: http://journals.cambridge.org/action/displayJourna...
Additional Information: © 2000 Cambridge University Press
Divisions: Mathematics
Subjects: Q Science > QA Mathematics
Date Deposited: 20 Nov 2008 10:26
Last Modified: 01 Nov 2024 04:16
URI: http://eprints.lse.ac.uk/id/eprint/7623

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics