Cookies?
Library Header Image
LSE Research Online LSE Library Services

Homotopy and the Kestelman-Borwein-Ditor theorem

Bingham, N. H. and Ostaszewski, Adam ORCID: 0000-0003-2630-8663 (2007) Homotopy and the Kestelman-Borwein-Ditor theorem. . London School of Economics and Political Science, London, UK.

Full text not available from this repository.

Abstract

The Kestelman-Borwein-Ditor Theorem, on embedding a null sequence by translation in (measure/category) `large' sets, has two generalizations. Miller MilH replaces the translated sequence by a `sequence homotopic to the identity'. The authors, in Research Report LSE-CDAM-2007-26, replace points by functions: a uniform functional null sequence replaces the null sequence and translation receives a functional form. We give a unified approach to results of this kind. In particular, we show that (i) Miller's homotopy version follows from the functional version, and (ii) the pointwise instance of the functional version follows from Miller's homotopy version.

Item Type: Monograph (Report)
Official URL: http://www.cdam.lse.ac.uk/Reports/
Additional Information: © 2007 London school of economics and political science
Divisions: Mathematics
Subjects: H Social Sciences > H Social Sciences (General)
Date Deposited: 10 Jul 2008 08:34
Last Modified: 12 Dec 2024 05:46
URI: http://eprints.lse.ac.uk/id/eprint/6838

Actions (login required)

View Item View Item