Cookies?
Library Header Image
LSE Research Online LSE Library Services

Detecting outliers in factor analysis using the forward search algorithm

Mavridis, Dimitris and Moustaki, Irini ORCID: 0000-0001-8371-1251 (2008) Detecting outliers in factor analysis using the forward search algorithm. Multivariate Behavioral Research, 43 (3). pp. 453-475. ISSN 1532-7906

Full text not available from this repository.
Identification Number: 10.1080/00273170802285909

Abstract

In this article we extend and implement the forward search algorithm for identifying atypical subjects/observations in factor analysis models. The forward search has been mainly developed for detecting aberrant observations in regression models (Atkinson, 1994) and in multivariate methods such as cluster and discriminant analysis (Atkinson, Riani, & Cerioli, 2004). Three data sets and a simulation study are used to illustrate the performance of the forward search algorithm in detecting atypical and influential cases in factor analysis models. The first data set has been discussed in the literature for the detection of outliers and influential cases and refers to the grades of students on 5 exams. The second data set is artificially constructed to include a cluster of contaminated observations. The third data set measures car's characteristics and is used to illustrate the performance of the forward search when the wrong model is specified. Finally, a simulation study is conducted to assess various aspects of the forward search algorithm.

Item Type: Article
Official URL: http://www.tandf.co.uk/journals/titles/0027-3171
Additional Information: © 2008 The Psychology Press
Divisions: Statistics
Subjects: Q Science > QA Mathematics
Date Deposited: 05 Jun 2008 15:06
Last Modified: 01 Oct 2024 03:35
URI: http://eprints.lse.ac.uk/id/eprint/5430

Actions (login required)

View Item View Item