Gyenis, Zalán and Rédei, Miklós ORCID: 0000-0001-5298-1443 (2011) Characterizing common cause closed probability spaces. Philosophy of Science, 78 (3). pp. 393-409. ISSN 0031-8248
Full text not available from this repository.Abstract
A probability space is common cause closed if it contains a Reichenbachian common cause of every correlation in it and common cause incomplete otherwise. It is shown that a probability space is common cause incomplete if and only if it contains more than one atom and that every space is common cause completable. The implications of these results for Reichenbach's Common Cause Principle are discussed, and it is argued that the principle is only falsifiable if conditions on the common cause are imposed that go beyond the requirements formulated by Reichenbach in the definition of common cause.
Item Type: | Article |
---|---|
Additional Information: | © 2011 Philosophy of Science Association |
Divisions: | Philosophy, Logic and Scientific Method |
Subjects: | B Philosophy. Psychology. Religion > B Philosophy (General) |
Date Deposited: | 27 Jun 2011 16:04 |
Last Modified: | 28 Aug 2024 01:15 |
URI: | http://eprints.lse.ac.uk/id/eprint/37077 |
Actions (login required)
View Item |