Achioptas, D. and Sorkin, Gregory B. ORCID: 0000-0003-4935-7820 (2000) Optimal myopic algorithms for random 3-SAT. In: 41st Annual Symposium on Foundations of Computer Science, 2000-11-12 - 2000-11-14, Redondo Beach, United States, USA.
Full text not available from this repository.Abstract
Let F3(n,m) be a random 3-SAT formula formed by selecting uniformly, independently and with replacement, m clauses among all 8(nC3) possible 3-clauses over n variables. It has been conjectured that there exists a constant r3 such that, for any ε>0, F3[n,(r3-ε)n] is almost surely satisfiable, but F3[n,(r3+ε)n] is almost surely unsatisfiable. The best lower bounds for the potential value of r3 have come form analyzing rather simple extensions of unit-clause propagation. It was shown by D. Achlioptas (2000) that all these extensions can be cast in a common framework and analyzed in a uniform manner by employing differential equations. We determine optimal algorithms that are expressible in that framework, establishing r3 >3.26. We extend the analysis via differential equations, and make extensive use of a new optimization problem that we call the “max-density multiple-choice knapsack” problem. The structure of optimal knapsack solutions elegantly characterizes the choices made by an optimal algorithm.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Official URL: | http://www.computer.org/portal/web/csdl/abs/procee... |
Additional Information: | © 2000 IEEE |
Divisions: | Management |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Date Deposited: | 13 May 2011 12:50 |
Last Modified: | 12 Dec 2024 04:38 |
URI: | http://eprints.lse.ac.uk/id/eprint/35848 |
Actions (login required)
View Item |