Cookies?
Library Header Image
LSE Research Online LSE Library Services

Polynomial constraint satisfaction problems, graph bisection, and the Ising partition function

Scott, Alexander D. and Sorkin, Gregory B. ORCID: 0000-0003-4935-7820 (2009) Polynomial constraint satisfaction problems, graph bisection, and the Ising partition function. ACM Transactions on Algorithms, 5 (4). 45:1-27. ISSN 1549-6325

Full text not available from this repository.
Identification Number: 10.1145/1597036.1597049

Abstract

We introduce a problem class we call Polynomial Constraint Satisfaction Problems, or PCSP. Where the usual CSPs from computer science and optimization have real-valued score functions, and partition functions from physics have monomials, PCSP has scores that are arbitrary multivariate formal polynomials, or indeed take values in an arbitrary ring. Although PCSP is much more general than CSP, remarkably, all (exact, exponential-time) algorithms we know of for 2-CSP (where each score depends on at most 2 variables) extend to 2-PCSP, at the expense of just a polynomial factor in running time. Specifically, we extend the reduction-based algorithm of Scott and Sorkin [2007]; the specialization of that approach to sparse random instances, where the algorithm runs in polynomial expected time; dynamic-programming algorithms based on tree decompositions; and the split-and-list matrix-multiplication algorithm of Williams [2004]. This gives the first polynomial-space exact algorithm more efficient than exhaustive enumeration for the well-studied problems of finding a maximum bisection of a graph, and calculating the partition function of an Ising model. It also yields the most efficient algorithm known for certain instances of counting and/or weighted Maximum Independent Set. Furthermore, PCSP solves both optimization and counting versions of a wide range of problems, including all CSPs, and thus enables samplers including uniform sampling of optimal solutions and Gibbs sampling of all solutions.

Item Type: Article
Official URL: http://talg.acm.org/
Additional Information: © 2009 ACM
Divisions: Management
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Date Deposited: 08 Apr 2011 12:58
Last Modified: 11 Dec 2024 23:35
URI: http://eprints.lse.ac.uk/id/eprint/33953

Actions (login required)

View Item View Item