Library Header Image
LSE Research Online LSE Library Services

Multidimensional inequality measurement: a proposal

List, Christian (1999) Multidimensional inequality measurement: a proposal. Nuffield College working papers in economics, 1999-W27. Nuffield College, Oxford, UK.

Full text not available from this repository.

Identification Number: 1999-W27


Two essential intuitions about the concept of multidimensional inequality have been highlighted in the emerging body of literature on this subject: first, multidimensional inequality should be a function of the uniform inequality of a multivariate distribution of goods or attributes across people (Kolm, 1977); and, second, it should also be a function of the cross-correlation between distributions of goods or attributes in different dimensions (Atkinson and Bourguignon, 1982; Walzer, 1983). While the first intuition has played a major role in the design of fully-fledged multidimensional inequality indices, the second one has only recently received attention (Tsui, 1999); and, so far, multidimensional generalized entropy measures are the only inequality measures known to respect both intuitions. The present paper proposes a general method of designing a wider range of multidimensional inequality indices that also respect both intuitions, and illustrates this method by defining two classes of such indices: a generalization of the Gini coefficient, and a generalization of Atkinson's onedimensional measure of inequality.

Item Type: Monograph (Working Paper)
Official URL:
Additional Information: © 1999 The Author
Subjects: H Social Sciences > HB Economic Theory
Sets: Departments > Government
Departments > Philosophy, Logic and Scientific Method
Collections > Economists Online
Research centres and groups > Centre for Philosophy of Natural and Social Science (CPNSS)
Date Deposited: 24 Jan 2011 16:18
Last Modified: 07 May 2015 11:00

Actions (login required)

View Item View Item