Library Header Image
LSE Research Online LSE Library Services

Order-invariant measures on fixed causal sets

Brightwell, Graham and Luczak, Malwina (2009) Order-invariant measures on fixed causal sets. . arXiv.

Full text not available from this repository.


A causal set is a countably infinite poset in which every element is above finitely many others; causal sets are exactly the posets that have a linear extension with the order-type of the natural numbers -- we call such a linear extension a {\em natural extension}. We study probability measures on the set of natural extensions of a causal set, especially those measures having the property of {\em order-invariance}: if we condition on the set of the bottom k elements of the natural extension, each possible ordering among these k elements is equally likely. We give sufficient conditions for the existence and uniqueness of an order-invariant measure on the set of natural extensions of a causal set.

Item Type: Monograph (Report)
Official URL:
Additional Information: © 2009 The authors
Divisions: Mathematics
Subjects: Q Science > QA Mathematics
H Social Sciences > HA Statistics
Date Deposited: 09 Apr 2010 13:59
Last Modified: 16 May 2024 13:14

Actions (login required)

View Item View Item