Library Header Image
LSE Research Online LSE Library Services

The “Princess and Monster” game on an interval

Alpern, Steven, Fokkink, Robbert, Lindelauf, Roy and Olsder, Geert-Jan (2008) The “Princess and Monster” game on an interval. SIAM Journal on Control and Optimization, 47 (3). pp. 1178-1190. ISSN 0363-0129

Full text not available from this repository.
Identification Number: 10.1137/060672054


minimizing searcher $S$ and a maximizing hider $H$ move at unit speed on a closed interval until the first (capture, or payoff) time $T=\min \{ t:S(t)=H(t)\}$ that they meet. This zero-sum princess and monster game or less colorfully search game with mobile hider was proposed by Rufus Isaacs for general networks $Q.$ While the existence and finiteness of the value $V=V(Q)$ has been established for such games, only the circle network has been solved (value and optimal mixed strategies). It seems that the interval network $Q=[-1,1]$ had not been studied because it was assumed to be trivial, with value $3/2$ and “obvious” searcher mixed strategy going equiprobably from one end to the other. We establish that this game is in fact nontrivial by showing that $V<3/2.$ Using a combination of continuous and discrete mixed strategies for both players, we show that $15/11\leq V\leq 13/9.$ The full solution of this very simple game is still open and appears difficult, though many properties of the optimal strategies are derived here.

Item Type: Article
Official URL:
Additional Information: © 2008 Society for Industrial and Applied Mathematics
Divisions: Mathematics
Subjects: Q Science > QA Mathematics
Date Deposited: 18 Feb 2009 12:23
Last Modified: 04 Jan 2024 23:57

Actions (login required)

View Item View Item