Cookies?
Library Header Image
LSE Research Online LSE Library Services

DIF analysis with unknown groups and anchor items

Wallin, Gabriel, Chen, Yunxiao ORCID: 0000-0002-7215-2324 and Moustaki, Irini ORCID: 0000-0001-8371-1251 (2024) DIF analysis with unknown groups and anchor items. Psychometrika, 89 (1). 267 - 295. ISSN 0033-3123

[img] Text (Chen_dif-analysis-with-unknown-groups-and-anchor-items--published) - Published Version
Available under License Creative Commons Attribution.

Download (2MB)

Identification Number: 10.1007/s11336-024-09948-7

Abstract

Ensuring fairness in instruments like survey questionnaires or educational tests is crucial. One way to address this is by a Differential Item Functioning (DIF) analysis, which examines if different subgroups respond differently to a particular item, controlling for their overall latent construct level. DIF analysis is typically conducted to assess measurement invariance at the item level. Traditional DIF analysis methods require knowing the comparison groups (reference and focal groups) and anchor items (a subset of DIF-free items). Such prior knowledge may not always be available, and psychometric methods have been proposed for DIF analysis when one piece of information is unknown. More specifically, when the comparison groups are unknown while anchor items are known, latent DIF analysis methods have been proposed that estimate the unknown groups by latent classes. When anchor items are unknown while comparison groups are known, methods have also been proposed, typically under a sparsity assumption – the number of DIF items is not too large. However, DIF analysis when both pieces of information are unknown has not received much attention. This paper proposes a general statistical framework under this setting. In the proposed framework, we model the unknown groups by latent classes and introduce item-specific DIF parameters to capture the DIF effects. Assuming the number of DIF items is relatively small, an L 1-regularised estimator is proposed to simultaneously identify the latent classes and the DIF items. A computationally efficient Expectation-Maximisation (EM) algorithm is developed to solve the non-smooth optimisation problem for the regularised estimator. The performance of the proposed method is evaluated by simulation studies and an application to item response data from a real-world educational test.

Item Type: Article
Official URL: https://link.springer.com/journal/11336
Additional Information: © 2024 The Author(s)
Divisions: Statistics
Subjects: H Social Sciences > HA Statistics
Date Deposited: 09 Feb 2024 14:45
Last Modified: 20 Dec 2024 00:52
URI: http://eprints.lse.ac.uk/id/eprint/121991

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics