Cookies?
Library Header Image
LSE Research Online LSE Library Services

The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking

Tzougas, George and Pignatelli di Cerchiara, Alice (2021) The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking. Insurance: Mathematics and Economics, 101. pp. 602-625. ISSN 0167-6687

Full text not available from this repository.

Identification Number: 10.1016/j.insmatheco.2021.10.001

Abstract

This paper is concerned with introducing a family of multivariate mixed Negative Binomial regression models in the context of a posteriori ratemaking. The multivariate mixed Negative Binomial regression model can be considered as a candidate model for capturing overdispersion and positive dependencies in multi-dimensional claim count data settings, which all recent studies suggest are the norm when the ratemaking consists of pricing different types of claim counts arising from the same policy. For expository purposes, we consider the bivariate Negative Binomial-Gamma and Negative Binomial-Inverse Gaussian regression models. An Expectation-Maximization type algorithm is developed for maximum likelihood estimation of the parameters of the models for which the definition of a joint probability mass function in closed form is not feasible when the marginal means are modelled in terms of covariates. In order to illustrate the versatility of the proposed estimation procedure a numerical illustration is performed on motor insurance data on the number of claims from third party liability bodily injury and property damage. Finally, the a posteriori, or Bonus-Malus, premium rates resulting from the bivariate Negative Binomial-Gamma and Negative Binomial-Inverse Gaussian regression model are compared to those determined by the bivariate Negative Binomial and Poisson-Inverse Gaussian regression models.

Item Type: Article
Additional Information: © 2021 Elsevier B.V.
Divisions: Statistics
Subjects: Q Science > QA Mathematics
H Social Sciences > HB Economic Theory
H Social Sciences > HA Statistics
Date Deposited: 05 Jan 2024 14:18
Last Modified: 16 Nov 2024 07:00
URI: http://eprints.lse.ac.uk/id/eprint/121179

Actions (login required)

View Item View Item