Library Header Image
LSE Research Online LSE Library Services

Random Fourier signature features

Toth, Csaba, Oberhauser, Harald and Szabo, Zoltan (2023) Random Fourier signature features. . arXiv.

[img] Text (Toth_et_al__Random-Fourier-signature-features--report) - Published Version
Download (603kB)

Identification Number: 10.48550/arXiv.2311.12214


Tensor algebras give rise to one of the most powerful measures of similarity for sequences of arbitrary length called the signature kernel accompanied with attractive theoretical guarantees from stochastic analysis. Previous algorithms to compute the signature kernel scale quadratically in terms of the length and the number of the sequences. To mitigate this severe computational bottleneck, we develop a random Fourier feature-based acceleration of the signature kernel acting on the inherently non-Euclidean domain of sequences. We show uniform approximation guarantees for the proposed unbiased estimator of the signature kernel, while keeping its computation linear in the sequence length and number. In addition, combined with recent advances on tensor projections, we derive two even more scalable time series features with favourable concentration properties and computational complexity both in time and memory. Our empirical results show that the reduction in computational cost comes at a negligible price in terms of accuracy on moderate-sized datasets, and it enables one to scale to large datasets up to a million time series.

Item Type: Monograph (Report)
Additional Information: © 2023 The Author(s)
Divisions: Statistics
Subjects: Q Science > Q Science (General)
Q Science > QA Mathematics
Date Deposited: 23 Nov 2023 11:30
Last Modified: 16 May 2024 13:36

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics