Library Header Image
LSE Research Online LSE Library Services

Bandwidth selection for nonparametric regression with errors-in-variables

Dong, Hao, Otsu, Taisuke and Taylor, Luke (2023) Bandwidth selection for nonparametric regression with errors-in-variables. Econometric Reviews, 42 (4). pp. 393-419. ISSN 0747-4938

[img] Text (Bag11) - Accepted Version
Repository staff only until 22 April 2024.

Download (621kB) | Request a copy

Identification Number: 10.1080/07474938.2023.2191105


We propose two novel bandwidth selection procedures for the nonparametric regression model with classical measurement error in the regressors. Each method evaluates the prediction errors of the regression using a second (density) deconvolution. The first approach uses a typical leave-one-out cross-validation criterion, while the second applies a bootstrap approach and the concept of out-of-bag prediction. We show the asymptotic validity of both procedures and compare them to the SIMEX method in a Monte Carlo study. As well as dramatically reducing computational cost, the methods proposed in this article lead to lower mean integrated squared error (MISE) compared to the current state-of-the-art.

Item Type: Article
Official URL:
Additional Information: © 2022 Taylor and Francis.
Divisions: Economics
Subjects: H Social Sciences > HB Economic Theory
JEL classification: C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods: General > C14 - Semiparametric and Nonparametric Methods
Date Deposited: 14 Jul 2022 09:03
Last Modified: 16 Feb 2024 17:24

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics