Cookies?
Library Header Image
LSE Research Online LSE Library Services

Reputation systems and recruitment in online labor markets: insights from an agent-based model

Lukac, Martin and Grow, André (2020) Reputation systems and recruitment in online labor markets: insights from an agent-based model. Journal of Computational Social Science, 4 (1). 207 - 229. ISSN 2432-2717

[img] Text (Lukac-Grow2021_Article_ReputationSystemsAndRecruitmen) - Published Version
Available under License Creative Commons Attribution.

Download (1MB)
Identification Number: 10.1007/s42001-020-00072-x

Abstract

Online labor markets—freelance marketplaces, where digital labor is distributed via a web-based platform—commonly use reputation systems to overcome uncertainties in the hiring process, that can arise from a lack of objective information about employees’ abilities. Research shows, however, that reputation systems tend to create winner-takes-all dynamics, in which differences in candidates’ reputations become disconnected from differences in their objective abilities. In this paper, we use an empirically validated agent-based computational model to investigate the extent to which reputation systems can create segmented hiring patterns that are biased toward freelancers with good reputation. We explore how jobs and earnings become distributed on a stylized platform, under different contextual conditions of information asymmetry. Our results suggest that information asymmetry influences the extent to which reputation systems may lead to inequality between freelancers, but contrary to our expectations, lower levels of information asymmetry can facilitate higher inequality in outcomes.

Item Type: Article
Official URL: https://www.springer.com/journal/42001
Additional Information: © 2020 The Authors
Divisions: Methodology
Subjects: H Social Sciences > HD Industries. Land use. Labor
Date Deposited: 24 Mar 2022 12:18
Last Modified: 12 Dec 2024 02:55
URI: http://eprints.lse.ac.uk/id/eprint/114454

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics