Larsson, Martin and Ruf, Johannes  ORCID: 0000-0003-3616-2194 
  
(2021)
Relative arbitrage: sharp time horizons and motion by curvature.
    Mathematical Finance, 31 (3).
     885 - 906.
     ISSN 0960-1627
ORCID: 0000-0003-3616-2194 
  
(2021)
Relative arbitrage: sharp time horizons and motion by curvature.
    Mathematical Finance, 31 (3).
     885 - 906.
     ISSN 0960-1627
  
  
  
| ![[img]](http://eprints.lse.ac.uk/style/images/fileicons/text.png) | Text (mafi.12303)
 - Published Version Available under License Creative Commons Attribution. Download (742kB) | 
      Identification Number: 10.1111/mafi.12303
    
  
  
    Abstract
We characterize the minimal time horizon over which any equity market with d ≥ 2 stocks and sufficient intrinsic volatility admits relative arbitrage. If d ∈ {2, 3}, the minimal time horizon can be computed explicitly, its value being zero if √ d = 2 and 3/(2π) if d = 3. If d ≥ 4, the minimal time horizon can be characterized via the arrival time function of a geometric flow of the unit simplex in R d that we call the minimum curvature flow.
| Item Type: | Article | 
|---|---|
| Official URL: | https://onlinelibrary.wiley.com/journal/14679965 | 
| Additional Information: | © 2021 The Authors | 
| Divisions: | Mathematics | 
| Subjects: | Q Science > QA Mathematics H Social Sciences > HG Finance | 
| Date Deposited: | 25 Jan 2021 14:42 | 
| Last Modified: | 14 Oct 2025 16:42 | 
| URI: | http://eprints.lse.ac.uk/id/eprint/108546 | 
Actions (login required)
|  | View Item | 
 
                                     Download Statistics
 Download Statistics Download Statistics
 Download Statistics