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Abstract 
I evaluate whether speed enforcement cameras reduce the number and severity of traffic 
accidents by penalizing drivers for exceeding speed limits. Relying on micro data on accidents 
and speed cameras across Great Britain, I find that installing these devices significantly 
enhance road safety. Putting another 1,000 cameras reduce around 1130 collisions, 330 serious 
injuries, and save 190 lives annually, generating net benefits of around £21 million. However, 
these effects are highly localised around the camera and dissipate over distance, and there is 
suggestive evidence of more collisions away from the camera, illustrating the possible 
limitations associated with fixed speed cameras. 
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a serious health issue that has disproportionately a�ected the younger generation, causing

many life years lost. For instance, in United Kingdom (UK), motor crashes are the leading

cause of deaths for those between 5 and 34 years old and account for more than 15% of the

deaths in this age group. Overall, 186,189 individuals are involved in collisions, out of which

162,315 su�er from slight injuries, 22,144 are seriously harm and 1,730 eventually died (DfT,

2016) in 2015 across UK. It is 3 and 8 times more likely to die from tra�c accidents relative

to homicides and HIV/AIDs. Translating the cost of accidents to dollar value, collisions cost

UK a total of ¿10.3 billion just in 20151.

Many reasons explain why crashes occur and why it can be fatal. The loss of control of

the vehicle could be due to carelessness, distraction, intoxication and speeding. According to

Department for Transport (DfT), speeding accounts for more than 60% of the fatal accidents

in UK in 2015 (e.g exceeding speed limit, travelling too fast for conditions, loss control of

vehicle, swerved vehicle). Similarly, other than the size and the built of auto-mobile, the use

of seat belts, terrain, weather and road conditions, the severity of the crashes is dependent

on the velocity of the colliding vehicle. While speeding might be considered a menial o�ence

to many, it is evident that it is immense in determining both the probability and gravity of

crashes.

Di�erent laws and regulations have been introduced to prevent tra�c accidents. Since

the seminal paper by Peltzman (1975), evaluating these interventions have drawn consider-

able interest from economists. These include texting bans (Abouk & Adams, 2013), speed

limits (Ashenfelter & Greenstone, 2004; van Benthem, 2015), tra�c police (DeAngelo &

Hansen, 2014), drinking (Dee, 1999; Hansen, 2015) and seat belt laws (Cohen & Einav,

2003). Falling back to the economic models of crime (Becker, 1968), these instruments deter

reckless driving through punishment. Another widely used strategy is speed camera that

penalizes driver for exceeding speed limits. They are often deployed at stretches of road

particularly prone to collisions (e.g windy, hilly roads, near schools and petrol stations).

There are several reasons why it is important to evaluate the e�cacy of speed cameras.

First, it is a controversial instrument. There are concerns whether it improves road safety

or it is simply an instrument to rake up revenues. Just in 2015, a total of 166,216 �nes

were issued in England and Wales that amount to more than ¿31 million2. It is argued

that alternative strategies, such as vehicle-activated speed limit sign, could be equivalently

1These �gures are much larger �gures in United States. A federal study conducted by National
Highway Tra�c Safety Administration reveals that estimated economic cost from motor crashes is
approximately US$242 billion in 2010 (Administration et al., 2014).

2Read more at http://www.bbc.co.uk/news/uk-38724301
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1 Introduction

Across the world, an estimated 50 million individuals are hurt from tra�c collisions, with

1.2 million succumbing to these injuries every year (Peden et al., 2004). Tra�c accident is
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e�ective in improving road safety3 but at a fraction of the cost. Interests groups have

since put up multiple petitions to remove these cameras4. Second, there are immediate

policy implications as many of the older devices are wet-�lm cameras that require upgrading

to digital technology. However, upgrades have been held back due to cuts to the Road

Safety Grants by the Coalition Government. In fact, several local partnerships, including

Oxfordshire, West Midlands, Avon and Somerset, Wiltshire, Swindon and Northamptonshire,

are forced to switch o� their cameras. If �xed speed cameras are e�cacious in improving

road safety, then these devices should be upgraded and switched back on. Finally, questions

are also raised whether these devices induce more collisions due to "kangaroo" e�ects (Elvik,

1997). That is when drivers abruptly slow down in proximity to the camera or immediately

speed up beyond surveillance, causing more accidents further away from the camera. Thus,

the objective of this paper is to address these questions through rigorous empirical analyses.

In this paper, I estimate the e�ects of �xed speed cameras on reducing occurrence and

severity of collisions. To do so, I put together a rich dataset of more than 2,500 �xed

speed cameras across England, Scotland and Wales (Great Britain). To measure accident

outcomes, I rely STATS19 Road Accident Dataset that documents every reported collision

from 1979 onwards. This allow me to conduct the analysis at a �ne spatial scale and to

capture enforcement e�ects moving away from the camera. In short, I compare accident

outcomes before and after the camera is introduced with comparable sites using a quasi-

experimental di�erence-in-di�erence framework.

For the estimates to be valid, it requires the mean di�erences in unobserved charac-

teristics between sites not to be correlated with the installation of enforcement cameras.

This assumption, however, is likely to be violated given the endogenous process of choos-

ing sites. Cameras are often found at areas prone to collisions and this selection process is

likely to accentuate the di�erences between sites with and without cameras. I adopt several

strategies to mitigate endogeneity. First, I restrict the analysis to only sites that will ever

have enforcement cameras and rely on time variation of installation for identi�cation. That

is, sites with cameras install in future (but no cameras now) will be employed as reference

groups for sites having installation now. Second, I constraint reference groups to sites that

received installations less than six years apart from those sites treated now. The notion is

that sites treated further apart could be more dissimilar. This could be the case if the `worst'

sites receive cameras �rst. Next, I include a vector of time-variant city level characteristics

3See https://www.publications.parliament.uk/pa/cm200708/cmhansrd/cm080422/

debtext/80422-0003.htm for more information
4Read http://www.safespeed.org.uk/ for more information
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to control for region-speci�c shocks that could correlate with camera installations. Finally,

to further attenuate observable di�erences, I pair each camera site with their most similar

later-treated counterfactual with a stringent exact matching requirements based on camera

and road characteristics .

I contribute to the existing literature in several ways. Earlier papers, largely restricted

to the transportation literature (See Table 7 in Data Appendix for details), have either no or

loosely constructed control groups and this could severely bias the estimates. I circumvent

this issue by carefully selecting untreated sites to control for trends in accident outcomes

in the absence of camera installations. Second, in contrast to previous papers, which are

usually city-speci�c analyses restricted to a small sample of cameras, I exploit a represen-

tative national dataset to increase the external validity of the research. Third, with �ne

spatial temporal information on accidents and speed cameras, I can accurately capture how

enforcement e�ects vary across space, allowing us understand whether cameras exacerbate

collisions away from the site. Finally, utilizing estimates from my analysis, I compute the

welfare e�ects associated with speed cameras to provide rigorous assessment whether these

devices should be deployed.

The headline �nding is that speed cameras unambiguously reduce both the counts and

severity of collisions. After installing a camera, the number of accidents and minor injuries

fell by 17%-39% and 17%-38%, which amounts to 0.89-2.36 and 1.19-2.87 per kilometre. As

for seriousness of the crashes, the number of fatalities and serious injuries decrease by 0.08-

0.19 and 0.25-0.58 per kilometre compared to pre-installation levels, which represents a drop

of 58%-68% and 28%-55% respectively. Putting these estimates into perspective, installing

another 1,000 speed cameras reduce around 1130 collisions5, mitigate 330 serious injuries,

and save 190 lives annually6, generating bene�ts of around ¿21 million7. These �ndings are

robust across a range of speci�cations that relaxes identi�cation assumptions

5These estimates are taken from the preferred speci�cation in Column (7) of Table 2.
6The ratio of lives save in my study is much higher than the average national accidents death ratio

over the last 10 years from 1995 to 2015 (1.02%). There are several explanations to this. First, speed
cameras are often found along roads with a much larger proportion of death related accidents. The
pre-treatment percentage of deaths from collisions around speed camera sites is 2.50% (see Table
1) more than twice the national ratio. Second, by reducing speed through deterrence, cameras
could have disproportionately mitigated more severe accidents. Another explanation is that speed
cameras are less e�ective in preventing collisions compared to deaths. Possible kangaroo e�ects, such
as sudden braking in front of camera, or speeding up beyond surveillance, could have attributed to
more collisions.

7This is obtained from multiplying the net bene�ts from welfare analysis in Table 5 by 1,000.
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I further allow enforcement e�ects to vary across di�erent speed limits, road types, and

across distance. My results show that it is more e�ective to install cameras along roads at

higher speed limits as much larger reductions in collision outcomes are observed. This could

be because these roads are more dangerous in the �rst place as drivers commute at higher

speeds. In addition, enforcement e�ects appear highly localised around 500 metres from

the camera and dissipate moving away. Beyond 1.5 kilometres from the camera, there are

suggestive evidence of a rebound in collisions, injuries and deaths, indicating drivers could

have speed up beyond camera surveillance and cause more accidents. These results, which

illustrate the limitations associated with �xed speed cameras, suggest that newer prototypes,

such as mobile or variable speed cameras, should be considered.

The remainder of this paper is structured as follows. Section 2 provides a background

to speed enforcement cameras in UK. Section 3 describes the identi�cation strategy adopted

in this paper. Section 4 outlines the data used in this paper and Section 5 discusses the

�ndings in this paper. Section 6 concludes the study.

2 Background

Di�erent enforcement cameras, including �xed, mobile and variable speed, are employed

across UK. Fixed speed camera, which is the earliest generation of speed detecting devices,

could be found as early as 1992 in London. Mobile and Variable speed camera are newer

prototypes that only grew in prominence in the last decade. Mobile speed cameras are

�xated on auto-mobiles with the �exibility to be deployed in di�erent locations but require

manpower to operate. Variable speed cameras enforce speed limit over a stretch by measuring

average speed between two points on the road, having the advantage of reducing speed over

a longer span. For an illustration refer to Figure 1. The focus of this paper is on �xed speed

cameras as I can reliably determine the location and operating dates. The minimum penalty

for speeding is ¿100 and 3 demerit points but this depends on how much the speed limit is

exceeded.

Cameras are typically enforced by safety camera partnership, which is a joint collabo-

ration of police force, local government, highway agency and health authorities. They work

hand-in-hand to identify dangerous sites for enforcement. Sites that are chosen for �xed
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(a) Fixed Speed (b) Average Speed

(c) Mobile Speed

Figure 1: Di�erent types of Speed Cameras used in United Kingdom

speed camera installation must comply with the following national selection rules (DfT,

2004)8:

1. Site length must be at a length of between 0.4 and 1.5 kilometres;

2. At least 4 killed and serious collisions (KSI) & 8 personal injury collisions (PIC) per

kilometre in the 3 years before installation9;

3. Suitable for the loading and unloading of cameras

4. At least 85% of the tra�c is travelling is at or above the Association of Chief Police

O�cers (ACPO) threshold based on speed surveys;

5. At least 20% of the drivers are exceeding speed limits;

6. No other more cost e�ective solutions to improve road safety as determined by the road

engineers.

8One other strategy is to utilize a regression discontinuity design over these rules and to obtain
some local estimates around these thresholds. This is not adopted due to the following reasons.
First, I do not have information on average speed, site length, suitability that a�ect whether a site
receives camera enforcement. Furthermore, these rules are not deterministic for installation. It is
possible for sites to have installations without meeting these rules, impeding identi�cation of e�ects
around these thresholds.

9One crash can result in multiple causalities. Adding up the number of slight injury collisions
and KSI will provide the PIC count.
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The �rst two guidelines are considered more important for enforcement. While not stated

explicitly, I do �nd that many of these cameras are often found near schools, bus stops and

petrol stations to ensure pedestrians safety. Even when not all the above requirements are

met, enforcement could take place if a large number of non-fatal collisions due to speeding

are recorded. These sites are classi�ed as exceptional sites. This ambiguity impedes the use

of observable characteristics to identify comparable reference groups. The local partnership

also decides whether to install mobile, average or �xed speed cameras. Fixed speed cameras

are usually deployed when many accidents cluster around the site. To commission new sites

for camera installation, partnerships are require to provide full details on these proposed sites

for the forthcoming year, subjected to approval by the national board. They are allowed

to recover penalty receipts to cover the cost of camera installations and enforcement. Since

2006, there are slight amendments to the guidelines. In particular, the KSI requirements fall

from 4 to 3. A risk value is computed for each site of which every KSI and PIC collisions

are given 5 points and 1 point respectively. To qualify for camera installation, a site must at

least have 22 points if the speed limit is 40mph or less and 18 points for speed limits beyond

50mph. For more details, refer to DfT (2005).

Once installed, several clear signages must be placed less than 1 kilometre away from

the camera. This is to warn drivers about the presence of camera and to inform them about

the speed limit. Since 2002, all the cameras are painted in bold yellow and must at least

be visible from 60 metres if the speed limit is less than 40 mph and at 100 metres if speed

limits are higher. This is to improve visibility to ensure that drivers do not abruptly reduce

speed in and around the camera, leading to more crashes. These cameras are unattended

but it is more expensive to maintain wet-�im older camera as it requires �im replacement.

Newer cameras uses wireless digital technology to transmit o�ending data.

Most of the cameras across UK are Gatsometer BV Cameras that are single direction

and rear facing. This means the camera will only take images of the back of a speeding

vehicle so as not to blind the o�ender and impede driving performance. However, some

of the newer cameras could be bi-directional10 or front facing11. Majority of the cameras

operate though radar technology although there are some that rely on strips on the roads

for speed detection (e.g Truvelo D-Cam, SpeedCurb). If there is a dispute to the �ne, the

10Cameras installed in the central of the road could be turned periodically to target motorists at
either side of the road. Sometimes, multiple housings could be installed on both sides of the road.
Newer devices such as the Truvelo D-Cam can take pictures at both directions.
11The second most popular type is Truvelo Cameras that takes an image of the speeding o�ender

from the front using non visible infra-red �ashes. The advantage is that there are no disputes
towards who is driving the vehicle.
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white lines on the roads near the housing will provide a secondary instrument to determine
12 whether drivers exceed speed limits. For an illustration of how speed cameras operate,

refer to Figure 2. Figure 9 in Data Appendix illustrates the di�erent prototypes across UK.

Figure 2: Illustration of how �xed speed cameras operate

3 Literature Review

Previous literature, largely from transport engineering , show that speed cameras reduce

travel speed, accidents, injuries and fatalities near the camera (Gains et al., 2004, 2005; Chen

et al., 2002; Shin et al., 2009). These estimates, however, vary substantially across di�erent

studies. A survey of existing literature reveals that after enforcement cameras are installed,

average speeds fell by between 1.7 and 4.4 miles per hour and crash reductions vary between

11% and 51%. For a review of the existing literature, refer to Wilson et al. (2010).

Existing empirical work, however, su�ers from substantial limitations that questions the

validity of the estimates. For one, researches are often limited to a small number of speed

cameras constrained in a particular area (Chen et al., 2002; Goldenbeld & van Schagen, 2005;

Jones et al., 2008; Shin et al., 2009). This raise concerns on the external validity of these

�ndings. This paper overcomes this limitation by analysing a more representative sample of

cameras of up to 2,500 �xed speed cameras installed across England, Scotland and Wales.

Secondly, and perhaps most importantly, many studies are restricted to before-and-after

analysis with either no or loosely constructed control groups to account for trends in accidents

12The distance between each of the white lines represent 5mph. Several images of moving vehicle
over time will illustrate whether driver is speeding.
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(Christie et al., 2003; Jones et al., 2008). Without controlling for the general downward

trends of accidents due to technological advancements over time, such as better brake system,

more robust car frame and improved road built, it is likely that the documented enforcement

e�ects are biased. For studies with control groups, they do not account for the fact that

camera location choices are endogenous. As mentioned before, selected sites are peculiar

accident "black" spots with many drivers exceeding speed limits. Hence, sites with no camera

installation are unlikely to be comparable. These di�erences, if unobserved or imprecisely

measured, will enter the speci�cation and bias the estimates. Without due consideration,

studies also rely either on nearby roads (Newstead & Cameron, 2003; Perez et al., 2007;

Shin et al., 2009) or identify reference groups based on road and tra�c characteristics (Keall

et al., 2001; Cunningham et al., 2008).

To create more comparable reference groups, some studies select sites based on data-

generating methods like empirical bayes to identify reference groups with similar trends in

accidents and tra�c �ow (Elvik, 1997; Chen et al., 2002; Gains et al., 2004, 2005). However,

it is often not justi�ed how reference groups are identi�ed. To clarify on the matching

process, Li et al. (2013) uses propensity score matching to determine reference groups based

on observable co-variates (e.g tra�c �ow, pre-treatment accident rates) that are used for

site selections. Still, it is improbable these strategies address the concerns as sites can have

cameras even without meeting all the requirements. Moreover, it is possible that these sites

are not treated because the surge in accidents are considered transient and it is likely to

revert to mean levels even without intervention, underestimating enforcement e�ects. In

this paper, I adopt the intuitive strategy of using only sites with cameras. That is, sites with

cameras in future will be employed as reference groups for sites with installation now. In

the subsequent sections, I will illustrate how the identi�cation assumptions for this strategy

are not violated.

Another point neglected by the literature is how the e�ectiveness of enforcement cameras

vary over distance as the focus is usually around the camera. This is an important point as

cameras could attribute to "kangaroo" e�ects (Elvik, 1997) - when drivers abruptly slow down

their vehicle near the camera to avoid o�ending or speed up once beyond camera surveillance,

inducing more collisions. Several studies, including Newstead & Cameron (2003); Mountain

et al. (2004); Jones et al. (2008), try to break down the impacts across distance but the

lack of �ne spatial information meant that bandwidths are too big and results are thus

uninformative. Relying on �ne spatial information on accidents and speed cameras, I can

delineate enforcement e�ects every 100 metres (up to 2 kilometres) to understand whether

cameras cause kangaroo e�ects.
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Finally, there is also a lack of analysis on how these enforcement cameras fare over time

and over di�erent speed limits. One of the few papers that addresses this is Christie et al.

(2003) that look at how e�ects vary over time and speed limits. Their study, however, is

constrained to an unrepresentative sample over a short period. Utilising detailed information

on speed camera characteristics, and over a longer timespan, I inform how cameras perform

over time and across roads with di�erent speed limits. For a succinct summary of previous

literature, refer to Table 7 in Data Appendix.

4 Data

To examine the e�ect of speed cameras on accidents, I put together a few data sources.

First, I rely on STATS 19 Road Accident Database that provides detailed information for

each reported accident to the Police in England, Wales and Scotland 13. A wide set of

details including location, time, date, road conditions, vehicle type, number of injuries,

serious injuries and fatalities (pedestrians and inside the vehicle) are recorded. Shape�les

that provide detailed information of the road network and that delineate the boundaries for

local authority districts14 across United Kingdom are provided by Ordinance Survey.

Details of the speed cameras are hand-collected from websites of various local authorities

provided by Department for Transport (DfT) 15. For most of the local authorities, information

on the location of camera housing, year of installation, speed limits and camera type are

provided. For areas that did not provide these information, I request access using Freedom

of Information Act (FOI). I classify whether these cameras are at rural or urban areas

according to Rural-Urban classi�cation shape�les provided by O�ce of National Statistics

(ONS).

Combining the various sources of information using Geographic Information System

(GIS), I am able to match the location of speed cameras and accidents to the road network.

To visualize, refer to Figure 3 and imagine the line as a particular stretch of road with a

13It is possible that there could be under-reporting of non fatal accidents to the police. This should
not be an issue for more serious crashes that are usually reported to the Police. As long as the
under-reporting of accidents is random across time and is not correlated with camera installation,
it should not bias my estimates
14Local authorities are responsible of conferring government services within a district. In total,

there are 353 di�erent districts in England, 32 in Scotland and 22 in Wales.
15For more information on the list of https://www.gov.uk/government/publications/

speed-camera-information
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camera installed. With the exact location of each accident, I could sum accident outcomes

along the road that the speed camera i is installed annually between k and k − 100 metres

interval. For example, within 100 metres from the camera, all accidents that take place in

area "A" in a particular year are accounted for. For my baseline estimates, which examine

the e�ects 500 metres left and right of the housing, I will aggregate all the accidents that

took place in "A", "B", "C", "D" and "E".

Figure 3: Illustration on how accident outcomes are computed across space

To capture the year-on-year variation in local authority characteristics, I rely on several

sources. Information on the Annual Average Vehicle Miles Travelled (VMT) is collected

from DfT. Details on the average earnings and number of hours worked are complied from

Annual Labour Force Survey. Data on population pro�le are collected from Nomis Popula-

tion Estimates. For details on how the variables are constructed, refer to Table 6 in Data

Appendix.

5 Identi�cation Strategy and Methodology

The research design adopted in this paper is a �xed e�ect, quasi-experimental di�erence-

in-di�erence approach estimated using count regressions models. This is because collision

outcomes follow an implicit count process that only takes non-negative integer values. Using

Ordinary Least Squares (OLS) approaches, which speci�es a conditional mean function that

takes negative values, one could possibly yield inconsistent estimates (Cameron & Trivedi,

2013). Therefore, I implement two count models: Poisson and Negative Binomial. The

latter was adopted because it relaxes the assumption that the conditional mean is equal to

the conditional variance, allowing for over-dispersion in the data. This strong assumption

for Poisson models are often violated. To correct for over-dispersion in Poisson regressions,

following DeAngelo & Hansen (2014), I report sandwich (robust) standard errors.
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Speci�cally, to examine the impact of speed cameras on tra�c accidents, the following

baseline speci�cation is adopted:

E(Yijt) = exp(αi + γTit +X ′jtφ+ θt + εijt), (1)

where Yijt is the counts of Y (Accidents, Slight Injuries, Serious Injuries, Deaths16)

within 0 & 500 metres from camera/site i in local authority j installed in year t.

The key variable of interest is Tit, which is a binary variable that equals to unity af-

ter the speed camera is installed. If enforcement cameras are able to deter speeding along

treacherous sites and improve road safety, I expect γ to be < 0. αi represents the time invari-

ant unobserved characteristics that in�uence whether a camera is installed. For instance,

sites that are more precarious (e.g on a steep slope, windy roads) or are bypassing areas

more susceptible to accidents (e.g schools, petrol stations) are more probable to be under

enforcement. To partial out these e�ects, I exploit the variation of outcome Y over time

with camera/site (i) �xed e�ects.

I further include a vector of time variant city-level controls at local authority j at year

t (X ′jt). These variables include vehicle miles travelled, population size, percentage of pop-

ulation between 18 to 25 years old, gross annual pay and hours worked. This is to allay

concern that there are regional shocks that could be correlated with installation of cameras

and in�uence Y . For instance, if these devices are installed in areas that experience a spike

in the proportion of teen drivers that could endanger road safety, γ could be underestimated.

θt represents year �xed e�ects to partial any general time trends in Y across the regions.

Technological advancements on car safety (better car frames, tires, air bags) and roads qual-

ity can reducing both the occurrences and severity of collisions over time. For more details

on the description of the variables used in this paper, refer to Table 6 in Data Appendix.

εijt is the error term. Endogeneity arises when E[εijt|Tit 6= 0]. This is likely to occur

given the selection bias from camera installation. Roads with enforcement cameras are

peculiar accident-prone roads with many drivers exceeding speed limits. Those without

cameras are likely to very di�erent from those with and such unobserved di�erences are

16According to the de�nition provided by the Department for Transport, slight injury is de�ned as
an injury of minor character that do not require any medical attention. Serious injury is when the
injury causes the person to be detained in the hospital for medical treatment and that the injury
causes death more than 30 days after the collision. Deaths is de�ned as a human casualty who
sustained injuries from the accident are die less than 30 days from the collision.
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likely to enter into estimation via εijt. Previous literature addresses this challenge by creating

reference groups through trends in tra�c �ow and accidents using empirical bayes method

(Elvik, 1997; Mountain et al., 2005) or matching on observable characteristics Li et al. (2013).

There are two main issues with using these sites. First, even with the stated parameters,

it is problematic given that installations could occur even though some of the criterion are

not met. In addition, eligible sites without cameras could be deemed by authorities as spots

experiencing transient episodes of more collisions. Accident rates are likely to dip even in the

absence of cameras and this could attribute to a downward bias to the enforcement e�ects.

Hence, the strategy adopted in this paper is to restrict the sample to only sites with

cameras and exploit the variation in the timing of installation. This is possible as I can

accurately determine the installation dates of �xed speed cameras. Identi�cation stems

from comparing changes in accident outcomes with changes on roads that will have cameras

installed in the near future. The assumption is that sites that have enforcement cameras

in the future are quite similar for sites that have cameras installations now. This could,

however, be violated if "worse" sites are treated �rst. Thus, I restrict future reference sites

(control group) to recently installed ones by removing any observations more than 3 years

before and after the year the enforcement cameras are installed.

To visualize, refer to �gure 4 that illustrates the timeline for a sample of four cameras

(A,B,C & D). Unshaded areas denote the window 3 years before and after the cameras are

installed with T = 0 representing pre-treatment and T = 1 representing post-treatment.

Shaded areas denote observations outside the +3,-3 window that are not included in the

analysis. In this example, CAM B and D are counterfactuals for CAM C. CAM B provides

the baseline from 1998 to 1999 and CAM D from 2000 to 2001 after CAM C is installed.

Conversely, CAM A is not a reference group for CAM C because the treatment dates are

too far apart. This also means that only a future "recently" treated camera will enter as

reference group.

While many papers focus on accident outcomes near the housing, they fail to capture how

enforcement e�ects could change moving away. The concern is whether "kangaroo" e�ects

could exacerbate collisions away from the housing. To precisely capture how the e�ects

change with distance from the camera housing, the following speci�cation is estimated:

E(Y k−100,k
ijt ) = exp(αk−100,ki + γTk−100,k

it +X ′k−100,kjt φ+ θk−100,kt + εijt) (2)

where k represents the various distance bandwidths (eg. 0 to 100m, 100m to 200m... 1900m

to 2000m) up to 2 kilometres left and right of the camera. In brevity, I am estimating
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Figure 4: Illustration of Time lines for di�erent cameras in sample. Bold lines represent
the treatment year for each camera and unshaded window denotes 3 years before and after
the camera is installed. Shaded areas denotes observations more than three years before
or after installation and are omitted from the analysis. T=1: Treatment Period; T=0:
Pre-Treatment

the enforcement e�ects for every 100m bandwidth to identify how enforcement e�ects vary

moving away from the camera. I achieve this by running strati�ed regressions for every k

and k− 100 bandwidth for k ∈ 0, 100, ...1900, 2000 metres. If the e�ects are highly localised,

I expect γ to be more negative as k is smaller. If there are displacement of accidents, I would

expect γk to be positive outside camera surveillance. Otherwise, the rest of the speci�cation

is similar to equation 1.

6 Empirical Results

In this section, I estimate the e�ects of speed enforcement cameras on various accident

outcomes. First, I provide some summary statistics for the sample of speed cameras in the

analysis. Next, I present baseline estimates on the e�ect of speed cameras within 500 metres

from the housing. I then put these estimates through various robustness and placebo tests

that relax identi�cation assumptions. Subsequently, I allow camera enforcement e�ects vary
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across di�erent speed limits, road type, over time and distance. Finally, I compute welfare

estimates associated with these devices.

6.1 Descriptive Statistics

Figure 5 and 6 shows the temporal and spatial distribution of �xed speed cameras from

1992 to 2016. In 1992, 24 cameras are installed in London in a pilot program before spreading

to other larger cities. By 2000, there are more than 1,000 cameras distributed across more

than half of the local authorities across Great Britain. Fixed speed cameras remain the

predominant instrument to deter speeding with another 1,368 devices deployed in the next

8 years. Most of the local authorities have at least 1 speed camera installed by 2008 but it is

less prominent after due to the increasing reliance on newer prototypes, such as variable and

mobile speed cameras, due to larger coverage areas or �exibility in relocation. As of 2016,

there are approximately 3,500 �xed speed cameras across England, Scotland and Wales. My

dataset, which encompasses a total of 2,548 cameras, covers more than 70% of total number

of �xed-speed cameras installed. The rest of the 30% are missing either because (1) the local

camera partnerships did not respond to our data requests17 or (2) the information provided

do not allow me to accurately determine the location of cameras.

Next, I present some basic summary statistics for pre-treatment accident outcomes,

camera, road and local authority characteristics in Table 1. Pre-treatment accident outcomes

are computed by averaging the number of collisions within 2 kilometres from the housing �ve

years before the camera is installed. For instance, if a camera is installed in 2000, I will take

the mean of annual crashes from 1995 to 1999. There are approximately 0.41 accidents every

100 metres annually, resulting in 0.40 slight injuries, 0.08 serious injuries and 0.01 deaths.

On average, the limit enforced by speed cameras is around 37mph although bulk of the

cameras impose a 30mph limit (more than 70%). Most of the cameras (75%) are installed

in A Roads - primary routes that are slightly smaller than motorways (or expressways).

The rest are mostly installed in B (11%) and Minor Roads (14%), with less than 2% �xed

along Motorways and C roads. There are not many �xed cameras on Motorways because

variable speed cameras are usually deployed instead to enforce speed limit over a longer

distance. Also, approximately 80% of the cameras located along busier roads in populated

urban areas.

17This include Warwickshire, Su�olk, Norfolk, Wiltshire and Swindon.
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Figure 5: Number of Speed Cameras and Local Authorities with speed cameras from 1992
to 2016 across England, Scotland and Wales

As mentioned, one of the identi�cation challenges is that earlier camera sites are di�erent

from those receiving installation later. To examine if this is the case, I split the sample into 5

groups (1992 to 1995, 1996 to 2000, 2001 to 2005, 2005 to 2010 and 2010 onwards) according

to the year the cameras are installed. I do not �nd sites that have cameras �rst more

dangerous than the latter ones. No evident di�erences are also observed in camera/road

characteristics, local authority demographics and labour outcomes. If anything, there seems

to be more crashes and injuries for cameras that are installed after 2006. These cameras

are often found on roads with higher speed limit. One possible explanation is the change

in the guidelines for selecting camera sites. As a precaution, I remove these cameras in my

robustness tests but this did not materially a�ect the results.

6.2 E�ects of Speed Cameras on Accidents

6.2.1 Baseline Estimates

Table 2 presents a set of baseline estimates from equation (1) that captures the e�ect of

speed enforcement cameras 500 metres left and right of the camera housing on various acci-

dent outcomes, including number of Accidents, Slight Injuries, Serious Injuries and Deaths.
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(a) 24 sites (b) +1044 sites

(c) +1368 sites (d) +109 sites

Figure 6: Development of Fixed Speed Cameras across England, Scotland and Wales from
1992 to 2016.

Due to space constraints, I only report results from Poisson regressions. Findings from Neg-

ative Binomial regressions in Table 8 in Data Appendix and are fairly similar. Only the

coe�cients (γ) for key estimate Tit are reported. To interpret these coe�cients, I compute

the semi-elasticity (%∆) by taking the exponential of γ before subtracting by 1. The abso-

lute reductions in collision outcomes (Absolute) are by computed by multiplying %∆ with

the pre-treatment mean. Only ever-treated sites are included in the speci�cation and late

treated sites act as reference sites for earlier ones. In short, I am comparing changes in

collision outcomes for sites after camera is installed with sites that has camera installations

in the future. The sample is smaller for Serious Injuries and Deaths. This is because there

are several sites that experience no fatalities or severe injuries over the sample period and
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Table 1: Summary statistics of camera sites across time

All 1992 - 1995 1996 - 2000 2001 - 2005 2006 - 2010 2011 - 2016
Pre-treatment Accident Outcomes

Accident Counts/100m 0.41 0.36 0.39 0.39 0.54 0.60
(0.37) (0.31) (0.39) (0.31) (0.56) (0.38)

Slight Injuries/100m 0.40 0.40 0.38 0.36 0.56 0.71
(0.42) (0.38) (0.41) (0.38) (0.58) (0.43)

Tra�c Deaths/100m 0.01 0.01 0.01 0.01 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

Serious Injuries/100m 0.08 0.07 0.08 0.08 0.08 0.11
(0.07) (0.05) (0.08) (0.07) (0.06) (0.06)

Camera/Road Characteristics
Speed Limit 37.20 36.53 32.75 34.16 41.05 34.79

(10.92) (10.73) (6.72) (9.39) (12.35) (9.33)
A Road 0.75 0.76 0.69 0.79 0.77 0.73

(0.43) (0.43) (0.46) (0.41) (0.42) (0.44)
B Road 0.11 0.10 0.14 0.08 0.12 0.12

(0.31) (0.31) (0.35) (0.27) (0.33) (0.32)
C Road 0.00 0.01 0.02 0.00 0.00 0.02

(0.06) (0.12) (0.15) (0.06) (0.00) (0.12)
Motorway 0.01 0.01 0.01 0.01 0.04 0.01

(0.08) (0.11) (0.07) (0.08) (0.19) (0.09)
Minor Road 0.14 0.11 0.14 0.13 0.07 0.13

(0.34) (0.31) (0.35) (0.33) (0.26) (0.33)
Rural 0.18 0.21 0.12 0.09 0.14 0.15

(0.38) (0.41) (0.32) (0.28) (0.35) (0.36)
LA Characteristics

Gross Annual Salary 25612.47 24170.51 23423.40 26221.43 23488.91 24245.93
(4317.99) (3650.61) (4193.10) (4143.65) (2774.21) (4143.14)

Hours worked 37.84 37.92 37.87 37.66 37.83 37.86
(0.74) (0.62) (0.71) (0.56) (0.53) (0.67)

Job Count 118697.66 112070.20 112079.69 143444.02 109272.51 116533.02
(92509.82) (84887.33) (93917.90) (120102.28) (90747.35) (95111.37)

Job Density 0.85 0.76 1.01 0.81 0.65 0.88
(0.41) (0.23) (3.91) (0.42) (0.16) (2.61)

% Pop 18 to 25 9.29 9.11 9.56 9.42 9.73 9.38
(2.44) (2.35) (2.92) (2.00) (1.82) (2.59)

Population Size 204907.15 221811.27 208318.24 262401.66 254666.19 219312.20
(104695.46) (135361.03) (142054.29) (177959.39) (178190.47) (142834.82)

Unemployment Rate (%) 6.33 6.63 6.95 7.25 8.40 6.84
(1.94) (1.95) (1.81) (1.99) (2.89) (1.95)

VMT 2425.91 2633.17 3271.23 2053.54 1619.41 2797.63
(2370.39) (2566.26) (2878.41) (2368.73) (1410.15) (2685.05)

Observations 2548 314 754 1123 301 57

Standard errors reported in parenthesis.

these sites are removed from the analysis.

Moving from left to right, additional covariates are included in the estimation. In the

�rst column, I estimate the e�ects associated with the entire sample of speed cameras from

1992 to 2016. I restrict to a sub-sample of sites that I have a full set of control variables
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in the second column. This sample is signi�cantly smaller. In both speci�cations, I include

site and year �xed e�ects but did not add any control variables. I observe that enforcement

cameras not only reduce the number of crashes, but also abate the severity of collisions. It is

also comforting to observe that results are very consistent across the two columns, suggesting

that the reduced sample is fairly representative.

Next, I include a vector of time-variant local authority (LA) characteristics to partial

out regional speci�c shocks that could correlate with the camera installations and a�ect

outcomes. This include demographic (population size and % of population between 18 to

25) and labour characteristics (gross annual salary and working hours). Controlling for

these di�erences has an inconsequential e�ect on the estimates. Subsequently, I control

for the annual average vehicle miles travelled (VMT) as more driving could induce more

accidents. Estimates remain fairly stable. I further include a number of weather controls

including temperature and wind speed. The concern is whether bad weather shocks, which

could induce more accidents, are correlated with camera installations. This signi�cantly

reduce the sample by more than two-third due to missing data but again did not change the

estimates much.

In column (6), I include a sample of non-camera sites18 despite meeting the selection

criterion (for more information refer to section 2). The rationale is to understand the bias

from incorporating non-treated sites based on some matching-on-observables strategy fre-

quently adopted in the previous literature. I �nd that estimated enforcement e�ects are

much smaller. This could be driven by the fact the untreated sites experience a fall in colli-

sion outcomes even without camera installation because these surge in accidents are deemed

to be transient and collision outcomes are expected to revert to mean levels. This explains

why local authorities chose not to install cameras around these sites. The result illustrates

the problem of using these sites to measure enforcement e�ects as it might underestimate

the enforcement e�ects of cameras. Furthermore, as mentioned, sites that receive installa-

tions later could be di�erent from those earlier treated sites. Thus, in column (7), I restrict

the reference groups to just recently treated cameras by excluding any observations more

than 3 years before and after the camera is installed. To illustrate, this is equivalent of

removing the shaded areas in Figure 4 from estimation. Like before, estimates remain fairly

18To create a sample of non-camera sites, I �rst place random points along major roads (A & B
roads) that are at least 2,000 metres from one another and 2,000 metres from the nearest speed
camera. Following that I calculate the yearly collision, injuries and death counts within 500 metres
from these random points. I only retain sites with more than 4 killed and serious injuries (KSI)
and 8 personal injury collisions in a 3 year rolling window. In total, I �nd 694 sites that meet the
selection criterion but are not treated.
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similar compared to before, suggesting that sites that receive installations �rst are not that

dissimilar from later treated sites.

Overall, I document that speed cameras not only attributed to signi�cant reductions in

the number of collisions, but also abated the severity of the crashes as well. Results are

fairly steady and the addition of controls do not appear to matter much. Across the board, I

observe substantial decreases for di�erent accident outcomes that are signi�cant at 1% level.

After an enforcement camera is installed, I observe collisions fell by 17% to 39%, representing

an absolute reduction of 0.89 to 2.36 per kilometre per annum. Slight injuries fell by between

1.19 and 2.87 per kilometre per annum, which amounts to a 17% to 38% decrease. There

are between 0.25 and 0.58 less serious injuries surrounding the camera, equivalent to a 28%

to 55% fall from pre-treatment levels. Largest reductions in relative levels are documented

for deaths. On average, there are approximately 0.08 to 0.19 less fatalities per kilometre,

which represents a massive 58% to 68% decline19.

6.2.2 Robustness & Placebo Tests

Table 3 summarizes a battery of robustness tests that further relaxes identi�cation as-

sumptions to ensure that earlier estimates are not spurious. Like before, I estimate each test

using both Poisson and Negative Binomial models and results did not di�er much.

First, I limit my analysis to a sub-sample of Motorways and A-Roads. The notion is that

tra�c20 is less likely to be displaced along these major roads after speed camera is introduced

because there are less alternative routes available. Results in Columns (1) and (2) reveal

that this did not matter much as enforcement e�ects are fairly similar compared to before.

Next, in column (3) and (4), I remove sites that were installed from 2006 onwards because the

change in the site selection criterion could induce these sites to be less comparable. Removing

these later treated sites appear to reduce my estimates marginally but inconsequentially.

Subsequently, I make use of the rich information associated with each camera. This

include (1) speed limits, (2) road type and (3) whether camera is installed in rural or urban

areas (See Table 6 for more details). To do so, �rst, I match each each site i with another

site j based on the following rules:
19This is because often there are very little reported deaths on roads, which is why the small

estimate could generate signi�cant changes.
20It will not be advisable to control for tra�c as it is likely to be a "bad" control. The implementa-

tion of speed camera is likely to reduce tra�c �ow by displacing them to neighbouring unmonitored
roads. Moreover, detailed road level tra�c �ow data is only available for a small sub-sample of
roads.
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Table 2: The E�ects of Speed Camera on various accident outcomes within 500 metres from
Camera using Poisson Regressions

(1) (2) (3) (4) (5) (6) (7)
All Baseline Demo VMT Weather Non-CAM -3,+3

Accidents -0.469a -0.488a -0.268a -0.243a -0.184a -0.095a -0.222a

(0.009) (0.011) (0.016) (0.017) (0.028) (0.016) (0.017)
Obs 66868 25720 25720 25720 7383 35929 9841
Absolute -2.11 -2.36 -1.44 -1.32 -0.89 -0.82 -1.13
% ∆ -37.43 -38.65 -23.54 -21.55 -16.78 -9.09 -19.88
No.of CAM 2481 1555 1555 1555 659 2249 1481
Slight -0.412a -0.483a -0.278a -0.253a -0.185a -0.057a -0.207a

(0.010) (0.013) (0.019) (0.019) (0.038) (0.019) (0.021)
Obs 57224 21355 21355 21355 5483 31564 8175
Absolute -2.25 -2.87 -1.82 -1.67 -1.19 -0.64 -1.33
% ∆ -33.74 -38.29 -24.30 -22.34 -16.87 -5.56 -18.70
No.of CAM 2123 1294 1294 1294 518 1988 1223
Serious -0.788a -0.747a -0.454a -0.414a -0.326a -0.326a -0.373a

(0.015) (0.022) (0.033) (0.034) (0.074) (0.028) (0.042)
Obs 63280 23650 23650 23650 6539 33823 8306
Absolute -0.58 -0.57 -0.39 -0.37 -0.25 -0.35 -0.33
% ∆ -54.55 -52.63 -36.49 -33.93 -27.81 -27.84 -31.15
No.of CAM 2346 1428 1428 1428 572 2115 1240
Deaths -0.956a -1.071a -1.029a -1.018a -1.124a -0.761a -0.858a

(0.041) (0.073) (0.116) (0.119) (0.209) (0.093) (0.153)
Obs 42924 11394 11394 11394 2787 18765 2843
Absolute -0.08 -0.12 -0.12 -0.12 -0.15 -0.09 -0.19
% ∆ -61.57 -65.75 -64.28 -63.85 -67.51 -53.27 -57.59
No.of CAM 1591 683 683 683 220 1155 426
CAM FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

Demographics 3 3 3 3 3

VMT 3 3 3 3

Weather 3

Note: Each reported coe�cient is the γ from a di�erent Poisson regression esti-
mated using Maximum likelihood. Dependent variable is the annual Y count where
Y=accident, injuries, serious injuries and deaths 500m left and right of camera hous-
ing. Absolute is the number of reductions in accident outcomes computed by multi-
plying the % ∆ with the pre-treatment mean of Y . % ∆ is the proportional change
(semi-elasticity) of collision outcomes after treatment and is computed by taking
exp(γ)− 1. In Column (1), I include the entire sample of cameras. In Column (2), I
conduct the analysis for a sample of sites that I have full set of co-variates. In Col-
umn (3), I include a vector of controls that captures the variation in demographics
and labour outcomes that include population size, % of 18 to 25, Gross Annual Pay
& hours worked. In Column (4), I control for the annual average vehicle miles trav-
elled. In Column (5), weather controls are added into the speci�cation. In Column
(6), I include a sample of non-camera sites that are eligible for camera installations
into the estimation. In Column (7), I constraint the analysis to observations just
3 years before and after from the year of installation. Sandwich (robust) standard
errors are reported in the parentheses. c p<0.10, b p<0.05, a p<0.01
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1. Within 20 kilometres from one another

2. Same rural-urban classi�cation

3. On the same road type (A,B,C,Minor or Motorways)

4. Same speed limits

5. Within 5 years from one another in installation dates

6. Within 70% - 130% in accident outcomes

The objective is to ensure that each camera is benchmarked with the most similar yet-

to-be treated site. In short, I am comparing changes in collision outcomes for camera i with

camera j based on these rules. I managed to pair up to 1229 sites. Instead of exploiting

within camera variation, now the speci�cation includes pair-match-camera �xed e�ects (or

pair interacted with camera �xed e�ects). Alleviating these di�erences between sites again

do not matter much as enforcement e�ects remain signi�cant for all collision outcomes.

Overall, my results con�rm that enforcement cameras have an immediate impact on

road safety within the vicinity of the housing. However, it is unsure that how this e�ect

could change across di�erent road/camera characteristics, space and over time. This will be

examined in the following sections.

6.2.3 E�ects across Road Types, Speed Limits & Time

Next, I allow the e�ectiveness of speed cameras to vary across di�erent road and camera

characteristics and over time with the following speci�cations:

E(Yijt) = exp(αi + γw(Tit ∗H′w) +X ′jtφ+ θt + εijt), (3)

where the H′w represents a vector of binary variables that equals to unity denoting each:

1. Speed limit (30,40,50,60 & 70)

2. Road Class (Motorway, A, B & Minor)

3. Year after treatment (1,2...10 years after installation)
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Table 3: Robustness Tests

(1) (2) (3) (4) (5) (6)
Major Roads No 2006-2016 Matched Pair FE
NB Poisson NB Poisson NB Poisson

Accidents -0.209a -0.237a -0.243a -0.264a -0.431a -0.401a

(0.015) (0.013) (0.019) (0.020) (0.029) (0.022)
Obs 30579 30579 19936 19936 17986 17986
Absolute -1.36 -1.52 -1.55 -1.67 -5.27 -4.97
% ∆ -18.87 -21.09 -21.61 -23.18 -35.03 -33.04
No.of CAM 1855 1855 1208 1208 1229 1229
Slight -0.213a -0.308a -0.261a -0.422a -0.452a -0.476a

(0.017) (0.014) (0.022) (0.025) (0.029) (0.027)
Obs 26967 26967 16143 16143 16688 16688
Absolute -1.67 -2.31 -2.00 -2.99 -6.26 -6.53
% ∆ -19.19 -26.54 -22.98 -34.40 -36.35 -37.89
No.of CAM 1639 1639 982 982 1129 1129
Serious -0.340a -0.411a -0.389a -0.485a -0.486a -0.517a

(0.031) (0.028) (0.041) (0.050) (0.054) (0.031)
Obs 28978 28978 18405 18405 16852 16852
Absolute -0.35 -0.40 -0.39 -0.46 -0.96 -1.00
% ∆ -28.85 -33.68 -32.22 -38.42 -38.46 -40.39
No.of CAM 1749 1749 1114 1114 1143 1143
Deaths -0.762a -0.789a -0.822a -0.879a -0.757a -0.468a

(0.103) (0.081) (0.149) (0.128) (0.190) (0.113)
Obs 14791 14791 7988 7988 8589 8589
Absolute -0.10 -0.10 -0.11 -0.11 -0.20 -0.14
% ∆ -53.32 -54.56 -56.06 -58.47 -53.12 -37.38
No.of CAM 886 886 480 480 557 557
CAM FE 3 3 3 3

Year FE 3 3 3 3 3 3

LA Controls 3 3 3 3 3 3

CAM FE*Pair-FE 3 3

Note: Each reported coe�cient is the γ from a di�erent regression. Columns
1,3,5 are estimated using Negative Binomial regressions, while 2,4,6 are esti-
mated using Poisson regressions. Dependent variable is the annual Y count
where Y=accident, injuries, serious injuries and deaths 500m left and right
of camera housing. In columns (1) & (2), I restrict the analysis to cameras
in A-Roads and Motorway to alleviate the e�ects of tra�c displacement on
collisions. In columns (3) & (4), I remove cameras installed from 2006 on-
wards as they could be di�erent from the other cameras. In columns (5)
& (6), I match each camera i with another camera j based on location,
pre-treatment accident outcomes and various road characteristics. I exploit
the variation now between two speed cameras by including speed cam inter-
acted with pair-�xed e�ects. Bootstrapped and sandwich (robust) standard
errors are reported for Negative Binomial and Poisson Regressions respec-
tively. c p<0.10, b p<0.05, a p<0.01.
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In short, I am allowing enforcement e�ects to vary across these characteristics. Speci�cations

for speed limits and road types are summarized in Panel A and B of Table 4 respectively.

Only the key estimates γw are reported.

From Panel A, although I �nd signi�cant improvement in road safety across di�erent

speed limits, more pronounced enforcement e�ects are documented along roads with higher

speed limits. Speci�cally, the number of collisions fell by 50 to 57% along 60mph roads

compared to 22 to 25% along 20mph roads. Similar larger decreases are observed for serious

injuries, at around 87-88%, and deaths, at around 94-95%, on 60mph roads. In contrast,

serious injuries fell by 36-41% along 20mph roads and no signi�cant reductions in deaths

are reported. There are several explanations to this. First, it could be that drivers along

the lower speed limit roads are already commuting slowly and insigni�cant reductions in

speed achieve by cameras do not matter much in reducing the gravity of collisions. Second,

attenuated enforcement e�ects for more binding speed limits suggest that drivers may be

forced to hastily drop speed so as not to be �ned, inducing more collisions in some instances

that could reduce enforcement e�ects.

Panel B summarizes the results of camera enforcement e�ects on di�erent road types.

Motorways are inter-city major roads for long distance travelling. A-Roads are slightly less

important compared to Motorways but can still be considered trunk roads that provides

large scale transport links. B-Roads are slightly smaller linkage roads for tra�c between

A-Roads and Minor roads. Minor Roads are smallest roads intended to connect local tra�c,

linking an estate/village with the larger road links. I do not observe stark di�erences in

enforcement e�ects across the di�erent road types. This is except for Motorway where no

signi�cant reductions in slight injuries and deaths are reported. This is likely due to a sample

issue as only 1% of the cameras are found along Motorways.

Next, I examine how the e�ectiveness of speed cameras vary over time. Results are

summarized in Figure 10. This is to understand whether the enforcement e�ects diminish

over time to justify the decision to switch o� the cameras. Results reveal that cameras

remain e�ective and in fact become more potent in reducing collisions and fatalities over

time. Weaker e�ects in the beginning suggest that some drivers could be unfamiliar with the

locations of camera. They could be forced to abruptly drop speed to avoid �nes, inducing

more crashes. Over time, drivers learn about these locations and are less prone to reckless

braking, explaining stronger enforcement e�ects.
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Table 4: Heterogeneous e�ects of Speed Camera on various accident outcomes across di�erent
roads and speed limits

Panel A: Speed Limit
Accidents Slight Serious Deaths
NB Poisson NB Poisson NB Poisson NB Poisson

Speed Limit 20 -0.281a -0.247a -0.148 -0.130b -0.533b -0.446b -0.621 -0.514
(0.077) (0.066) (0.107) (0.066) (0.210) (0.211) (4.765) (1.007)
-24.46 -21.91 -13.74 -12.23 -41.33 -35.96 -46.28 -40.19
-1.49 -1.34 -1.03 -0.92 -0.45 -0.39 -0.09 -0.07

Speed Limit 30 -0.294a -0.227a -0.352a -0.241a -0.432a -0.356a -0.876a -0.891a

(0.016) (0.017) (0.025) (0.020) (0.035) (0.035) (0.143) (0.124)
-25.45 -20.31 -29.64 -21.43 -35.05 -29.98 -58.37 -58.98
-1.55 -1.24 -2.22 -1.61 -0.38 -0.32 -0.11 -0.11

Speed Limit 40 -0.454a -0.371a -0.515a -0.358a -0.748a -0.657a -1.225a -1.277a

(0.034) (0.036) (0.042) (0.040) (0.073) (0.067) (0.220) (0.238)
-36.46 -30.99 -40.27 -30.10 -52.65 -48.14 -70.63 -72.11
-2.23 -1.89 -3.02 -2.25 -0.57 -0.52 -0.13 -0.13

Speed Limit 50 -0.312a -0.213a -0.410a -0.217a -0.658a -0.538a -1.146a -1.188a

(0.047) (0.057) (0.050) (0.063) (0.158) (0.138) (0.265) (0.285)
-26.79 -19.15 -33.62 -19.49 -48.19 -41.62 -68.22 -69.52
-1.64 -1.17 -2.52 -1.46 -0.52 -0.45 -0.13 -0.13

Speed Limit 60 -0.851a -0.697a -0.931a -0.598a -1.682a -1.645a -2.871 -3.060a

(0.164) (0.162) (0.185) (0.203) (0.294) (0.275) (4.342) (0.755)
-57.31 -50.21 -60.59 -45.01 -81.39 -80.70 -94.33 -95.31
-3.50 -3.07 -4.54 -3.37 -0.88 -0.87 -0.18 -0.18

Speed Limit 70 -0.443a -0.314a -0.480a -0.291c -0.718b -0.709b -1.499a -1.505a

(0.106) (0.115) (0.176) (0.163) (0.321) (0.286) (0.356) (0.307)
-35.81 -26.94 -38.09 -25.21 -51.23 -50.79 -77.67 -77.80
-2.19 -1.64 -2.85 -1.89 -0.55 -0.55 -0.14 -0.14

Obs 24871 24871 20522 20522 22833 22833 11004 11004
No.of CAM 1503 1503 1243 1243 1378 1378 659 659

Panel B: Road Type
A Road -0.251a -0.232a -0.353a -0.243a -0.472a -0.393a -0.977a -0.990a

(0.018) (0.017) (0.019) (0.019) (0.029) (0.035) (0.106) (0.121)
-22.20 -20.70 -29.77 -21.60 -37.60 -32.49 -62.36 -62.84
-1.36 -1.26 -2.23 -1.62 -0.41 -0.35 -0.12 -0.12

B Road -0.367a -0.325a -0.506a -0.345a -0.633a -0.514a -1.359a -1.289a

(0.038) (0.040) (0.045) (0.053) (0.071) (0.077) (0.267) (0.301)
-30.72 -27.77 -39.70 -29.19 -46.89 -40.20 -74.31 -72.44
-1.88 -1.70 -2.97 -2.19 -0.51 -0.43 -0.14 -0.13

Minor Road -0.357a -0.317a -0.607a -0.340a -0.718a -0.645a -1.425a -1.346a

(0.068) (0.055) (0.084) (0.094) (0.113) (0.096) (0.353) (0.344)
-30.04 -27.20 -45.50 -28.82 -51.24 -47.52 -75.95 -73.98
-1.83 -1.66 -3.41 -2.16 -0.55 -0.51 -0.14 -0.14

Motorway -0.266a -0.262a -0.390 -0.105 -0.544c -0.496c -0.116 -0.135
(0.103) (0.077) (0.246) (0.141) (0.306) (0.283) (4.551) (0.470)
-23.34 -23.05 -32.32 -9.95 -41.96 -39.13 -10.97 -12.62
-1.43 -1.41 -2.42 -0.75 -0.45 -0.42 -0.02 -0.02

Obs 25720 25720 21355 21355 23650 23650 11394 11394
No.of CAM 1555 1555 1294 1294 1428 1428 683 683

Note: Each reported coe�cient is the γw from a di�erent regression from equation 3 estimated
using maximum likelihood. Dependent variable is the annual Y counts where Y=accident,
injuries, serious injuries and deaths 500m left and right of camera housing. I allow the ef-
fects to vary across di�erent speed limits and road types in Panel A and B respectively. The
speci�cation adopted is similar to Column 4 of Table 2. Bootstrapped and sandwich (robust)
standard errors are reported in parentheses for Negative Binomial and Poisson respectively.
c p<0.10, b p<0.05, a p<0.01.
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6.2.4 E�ects over Distance

Figure 8 summarizes the estimates from equation (2) that show the e�ects of speed en-

forcement cameras moving away from the camera housing using Poisson regressions. Results

from Negative Binomial models are summarized in Figure 11 in Data Appendix. Like before,

results are fairly similar across these two models. Precisely, I am capturing the change in ac-

cident outcomes every 100 metres. Every dot represents the coe�cients (γk) for key estimate

Dk−100,k ∗Tit from a di�erent regression at k to k−100 bandwidth where k = 0, 100, ....2000.

Tails denote the 95% con�dence interval. If the estimate is denoted by dot, it is signi�cant

at least at 10% level. The coe�cients can be interpreted as number of accident outcomes

per 100 metre.

Unsurprisingly, I �nd localised enforcement e�ects around the camera and these e�ects

dissipate quickly across distance. Reductions are largely around 0 to 500 metres around

the camera and strongest e�ects are reported closest to the camera. This result is fairly

consistent across the di�erent accident outcomes and correspond to earlier literature (Li

et al., 2013). Beyond 700 metres from the device, �xed speed cameras are no longer able to

enhance road safety. Moving further away, beyond 1500 metres from the camera, there are

suggestive evidence of kangaroo e�ects as I report small rebound in the number of collisions,

serious injuries and deaths. A small proportion of drivers could have speed up beyond the

surveillance of cameras, inducing more collisions post implementation. However, these e�ects

are quite small compared to the enforcement e�ects from cameras.

6.3 Cost-Bene�t Analysis

This section reports a cost bene�t analysis on speed cameras. The costs include the �xed

and operating costs of camera and the time delays incurred by bypassing drivers, while the

bene�ts include the savings from less collision, injuries and fatalities. Fines from speeding

tickets are not considered as the government could redistribute these revenues to the society.

While I am not able to recover all these estimates from my analysis, I rely on either previous

literature or reports. The parameters are summarized in Table 5.

For the bene�ts, I rely on the savings per tra�c accidents, injuries and deaths computed

by DfT21. These values account for both (1) casualty-related costs (loss output, medical and

21For more information, refer to https://www.gov.uk/government/uploads/system/uploads/

attachment_data/file/254720/rrcgb-valuation-methodology.pdf
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ambulance, human costs) and (2) accident-related costs (property damage, insurance and

administrative and police costs). Total savings are computed by multiplying earlier estimates

on reductions with the savings on per capita or accident basis.

For the costs, to compute the time delays from speed camera, I rely on estimates from

Gains et al. (2005). Speed is approximately 10kmh slower after the camera is implemented.

Taking the average speed limit of 58kmh22 (30mph) and a distance of 1km around the

camera, drivers incur a delay of 1.24 minutes whenever they pass a speed camera. Based on

the Annual Average Daily Tra�c (AADT) �ow along roads with speed cameras from DfT,

I assume that there are approximately 18,500 vehicles bypassing each camera every day,

corresponding to around 6.75 million annually. In total, assuming an average occupancy of

1.56 per car, time delays incurred by all bypassing vehicles amount to 217,700 hours every

year.

To compute loss of income from time delays, I assume that 63.3% of the commuters are

between 16 to 64 and are working according to population estimates. As of 2015, employment

rate in U.K is around 74.5%. After excluding holidays and weekends, there are about 261

working days annually and if individuals work around 8 hours every day, and taking median

hourly wage as ¿14.17/hour, the annual net loss in income from delays per camera per annum

amounts to ¿346,749. The cost of installing a �xed speed camera is approximately ¿59,000

and the operating and maintenance cost is around ¿12,441.

The estimated bene�ts are likely to be smaller from the actual bene�ts realized as I did

not factor in other non-pecuniary perks. These include environmental bene�ts from slower

travelling speed that could save more fuel, reduce emissions and improve health outcomes

(van Benthem, 2015). Enforcement cameras could also enhance crime intelligence as images

from these devices could help to solve other crimes (Hooke et al., 1996). Even without

considering these perks, net bene�ts generated per camera amount to around ¿21,119 per

annum, justifying the implementation of cameras.

22Since most of the speed cameras impose a 30mph speed limit, time delays will be computed
based on the scenario that drivers commute, on average, at a speed limit of 30mph before camera
installation. Drivers are assumed to slow down along a 1km stretch around the camera housing,
500m left and right of the housing. Time delays per driver per trip is therefore approximately equal
to Distancearoundcamera

OriginalSpeed−Reductions .
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Table 5: Cost-Bene�t Analysis per speed cameras across Great Britain

Parameter Source Value per Unit Net Cost/Bene�t/Year
Savings from avoiding Accidents

Damage-only DfT(2015) ¿2,142 1.1×£2, 142 = £2, 356
Slight Injuries DfT(2015) ¿15,450 1.3×£15, 450 = £20, 085
Serious Injuries DfT(2015) ¿200,422 0.3×£200, 422 = £60, 126
Deaths DfT(2015) ¿1,783,556 0.2×£1, 783, 556 = £356, 712
(A)Total Bene�ts ¿439,279

Time Delays
Speed Reductions Gains(2005) 9.65kmh 1km

(58kmh−9.65kmh) ≈ 1.24mins

Average No. of Cars DfT(2016) 18,500 cars/day 18, 500× 365 = 6, 752, 500
Average Occupancy/car DfT 1.56/car
Total Time Loss (h) 6, 752, 500× 1.24

60
× 1.56 =≈ 217, 700hrs

Employment Rate ONS(2015) 74.5%
% of Pop between 16-64 ONS(2015) 63.3%
No. of working hours per day 8 hours
No. of working days per year 261 days
Median Gross Hourly Earnings ONS(2015) ¿14.17/hour
(B)Loss of Income per cam 8

24
× 74.5%× 63.3%× 217, 700×£14.17× 261

365
= ¿346,749

Cost of Cameras
Fixed Cost Parliament(2008) ¿50,000 £50, 000× 1.18 = £59, 000
Operating Cost Hooke(1996) ¿8,560/year £8, 560× 1.45 = £12, 441
(C)Total Camera Costs per year ¿71,411
(D)Total Costs B+C=¿418,160
Net Costs/Bene�ts A-D=+¿21,119

Note: All the dollar values are adjusted to 2015 price levels. Estimates on savings from avoiding accidents are
obtained from Column (7) of Table 2. Fixed Costs include planning, signage, installation and procurement, and
other �xed costs. Operating costs include operation, administrative, maintenance, publicity and liaison costs
that recurs annually. These �gures are obtained by averaging across a sample of cameras installed 10 study areas
across UK in �nancial year 1995/96.

7 Conclusion

This paper utilizes micro geo-coded dataset on tra�c accidents to evaluate the e�ective-

ness of speed enforcement cameras. These devices deter reckless driving on roads particularly

prone to collisions by imposing �nes when drivers exceed speed limits. In contrast to earlier

literature, I address the selection bias by analyzing only sites that will ever have a speed cam-

era installed. The empirical strategy is a quasi-experimental di�erence-in-di�erence frame-

work that relies on comparing accident outcomes before and after a speed camera is installed

with other sites that will experience installation in the near future.

Assuming a linear relationship between cameras and collisions, putting another 1,000

speed cameras on roads could reduce approximately 1130 crashes, preventing around 330

serious injuries and in turn, saving 190 lives every year and generating bene�ts up to ¿21

million. These results remain robust across a range of speci�cations that relaxes the identi-

�cation strategies. Dwelling further, however, reveal that these e�ects are largely localised
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within 0 to 500 metres from the camera and there are suggestive evidence of a rebound in

collisions further away from the camera. This illustrates the possibility of drivers speeding up

beyond the surveillance of cameras and inducing more accidents. Nevertheless, simple cost-

bene�t analysis reveals that the perks from installing a camera are marginally larger than

the cost of cameras. But with technology advancement, newer prototypes, such as mobile

and variable speed cameras, should be considered to circumvent the weaknesses associated

with �xed speed cameras and more e�ectively deter speeding.
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8 Data Appendix

Table 6: List of Variables

Variable Source Description
Dependent Variable (Yijt )

Accident STATS19 Number of Accidents at site i in LA j in
year t

Slight Injuries STATS19 Number of Slight Injuries at site i in LA j
in year t

Serious Injuries STATS19 Number of Serious Injuries at site i in LA
j in year t

Deaths STATS19 Number of Deaths at site i in LA j in year
t

Local Authority Characteristics(X ′jt)

Gross Annual Salary Annual Labour Force
Survey

Average Gross annual salary at LA j

Hours worked Annual Labour Force
Survey

Average number of hours worked in LA j

Job Density Nomis Number of Jobs per unit area of LA j
(hectare)

% of 18 to 25 Nomis Population
Estimates

Percentage of population aged 18 to 25 in
LA j

VMT DfT Annual average vehicles miles travelled in
LA j

Max Temperature MIDAS Annual average max air temperature in LA
j

Min Temperature MIDAS Annual average min air temperature in LA
j

Wind Speed MIDAS Annual average wind speed in LA j
Camera/Road Characteristics

Speed Limit - Binary variable denoting whether speed
camera in site i has a speed limit of l where
l=30,40,50,60 or 70

Road Type - Binary variable denoting whether speed
camera in site i in road type r where
r=Motorway, A, B, C or Minor

Rural ONS Rural Urban
2011 classi�cation

Binary variable denoting whether speed
camera in site i is in rural area, otherwise
it is located in urban area
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Table 7: Review of Existing Literature on Speed Camera Evaluation

Authors Dataset Methodology Results

Chen et al. (2002) 12 Photo Radar Pro-
grams (PRP) over
22km along a highway
in British Columbia,
Canada, 2 years pre
post

EB 2.8 km/h (3%) ↓ in speed; 7% ↑ in tra�c;
overall 16% ↓ in collisions across entire corri-
dor with positive spillover e�ects at non PRP
locations. Unlike cameras, drivers are unsure
of PRP deployment

Christie et al. (2003) 101 Mobile Speed
cameras in South
Wales, UK, 3 years
pre, 1 year post

BA with circle and
route based measures

50% (1.8) ↓ in injury crashes; e�ects are
within 300 to 500m and no longer signi�-
cant beyond; e�ects are stable across time
and similar for 30mph and 60-70mph roads

Cunningham et al.

(2008)
Mobile Speed cameras
in Charlotte, North
Carolina, US, 5 years

BA with compara-
ble reference groups
constructed based on
characteristics

10% ↓ in collisions, decrease in travelling
speed

Elvik (1997) 64 Speed cams in Nor-
way,

EB 20% ↓ in injury crashes; 12% ↓ in property
crashes; e�ects are largely driven by road sec-
tions with warrants - a certain level of crash
and speed limit for the use of speed limit.

Gains et al. (2004,
2005)

2,300 speed cameras
across 23 areas across
UK, 3 years pre post

BA & EB 6% ↓ in speed; 91% ↓ in excessive speeding
(>15mph); 22% ↓ in collisions; 42% ↓ in ca-
sualties

Goldenbeld & van
Schagen (2005)

28 Rural Roads in
Friesland, Nether-
lands, 5 years pre and
8 years post

BA with other rural
roads as comparables

4 km/h ↓ in speed; overall 21% ↓ in collisions
and casualties

Hess & Polak (2003) 43 �xed speed cams in
Cambridgeshire, Eng-
land, over 11 years

ARIMA, BA with
comparable ref-
erence sites, long
pre-treatment period
to mitigate RTM

18% ↓ in collisions & 32% ↓ in injury crashes

Jones et al. (2008) 29 mobile cams in
Norfolk, England, for
4 years

BA with 48 �xed
speed cam sites as
comparables

18% ↓ in collisions & 35% ↓ in fatal crashes;
no evidence of migration of accidents

Li et al. (2013) 771 �xed speed cam
sites across England, 9
years

DID-PSM, EB; refer-
ence groups by match-
ing on observables

23-31% (0.9-1.4) ↓ in collisions; 0.12 - 0.34
↓ in fatal crashes; e�ects smaller with PSM
& localised within 200m ; no spillovers of
accidents

Li & Graham (2016) 771 �xed speed cam
sites across England, 9
years

DID-PSM, EB; refer-
ence groups by match-
ing on observables

Cameras are more e�ective in reducing col-
lisions on riskier sites, measured by higher
historical collision counts.

Keall et al. (2001) Visible and Hidden
cameras in 4 regions in
New Zealand, 1 year
pre and post

BA with matching on
road characteristics
for comparables

0.7 km/h ↓ in speed; overall 11% ↓ in colli-
sions, 19% ↓ casualties; hidden cameras has
a more general e�ect across road

Mountain et al. (2004) 62 �xed speed cams
across Great Britain,
3 years pre post

EB 35% ↓ in speeding, 26% (1.36) ↓ in collisions,
34% (0.31) ↓ in fatal crashes 500m from cam;
e�ects ↓ moving away from cam

Mountain et al. (2005) 79 enforcement
schemes (17 mobile,
62 �xed) across Great
Britain, 3 years pre
post

EB 4% ↓ for every 1mph ↓ in speed ;Larger ↓
reported for lower speed roads; Vertical de-
�ections (speed humps) more e�ective in re-
ducing speed and accidents

Newstead & Cameron
(2003)

Speed cameras in
Queensland, Aus-
tralia, over a 5 year
span (2006 to 2007)

Poisson BA with ref-
erence sites more than
6km away

21% ↓ in non-injury crashes, 31% ↓ in injury
crashes, largest e�ects localised within 2km

Perez et al. (2007) 8 mobile cams in
Barcelona, Spain

BA Poisson regres-
sions with nearby ref-
erence sites

9 mph ↓ in speed; 27% ↓ in collisions and
injuries, greater e�ects on weekends

Shin et al. (2009) 6 speed cameras in
Scottsdale, Arizona
US, over a 2 year span
(2006 to 2007)

BA, EB with nearby
reference sites

9 mph ↓ in speed; overall 44-55% ↓ in all
collisions, 28-48% ↓ in injury crashes, but
no e�ect on rear-end crashes; no discernable
spillovers

EB - Empirical Bayes, BA - Before and after analysis, DID - Di�erence-in-Di�erence
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(a) Original Gatsometer BV (b) Digital Gatsometer

(c) Original Truvelo (d) Truvelo D-Cam

(e) SpeedCurb

Figure 9: Di�erent models of Fixed Speed Cameras across United Kingdom

36



Table 8: The E�ects of Speed Camera on various accident outcomes within 500 metres from
Camera using Negative Binomial Regressions

(1) (2) (3) (4) (5) (6) (7)
All Baseline Demo VMT Weather Non-CAM -3,+3

Accidents -0.489a -0.520a -0.280a -0.268a -0.212a -0.169a -0.232a

(0.009) (0.011) (0.018) (0.012) (0.032) (0.014) (0.020)
Obs 66868 25720 25720 25720 7383 38291 9841
Absolute -2.18 -2.47 -1.49 -1.43 -1.01 -1.34 -1.18
% ∆ -38.68 -40.52 -24.40 -23.47 -19.07 -15.52 -20.70
No.of CAM 2481 1555 1555 1555 659 2429 1481
Slight -0.433a -0.527a -0.423a -0.379a -0.332a -0.222a -0.310a

(0.011) (0.013) (0.018) (0.017) (0.041) (0.015) (0.020)
Obs 57224 21355 21355 21355 5483 33926 8175
Absolute -2.35 -3.07 -2.59 -2.36 -1.99 -2.19 -1.89
% ∆ -35.16 -40.97 -34.52 -31.52 -28.27 -19.91 -26.67
No.of CAM 2123 1294 1294 1294 518 2168 1223
Serious -0.785a -0.758a -0.533a -0.499a -0.447a -0.401a -0.443a

(0.016) (0.022) (0.029) (0.032) (0.059) (0.026) (0.045)
Obs 63280 23650 23650 23650 6539 36160 8306
Absolute -0.58 -0.57 -0.45 -0.42 -0.32 -0.40 -0.38
% ∆ -54.40 -53.15 -41.30 -39.31 -36.07 -33.01 -35.81
No.of CAM 2346 1428 1428 1428 572 2290 1240
Deaths -0.934a -1.006a -1.048a -1.018a -0.950a -0.708a -0.883a

(0.040) (0.065) (0.105) (0.098) (0.200) (0.061) (0.124)
Obs 42924 11394 11394 11394 2787 20357 2843
Absolute -0.08 -0.12 -0.12 -0.12 -0.14 -0.08 -0.19
% ∆ -60.69 -63.41 -64.95 -63.85 -61.32 -50.73 -58.63
No.of CAM 1591 683 683 683 220 1271 426
CAM FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

Demographics 3 3 3 3 3

VMT 3 3 3 3

Weather 3

Note: Each reported coe�cient is the γ from a di�erent Negative Binomial regression
estimated using Maximum likelihood. Dependent variable is the annual Y count
where Y=accident, injuries, serious injuries and deaths 500m left and right of cam-
era housing. Absolute is the number of reductions in accident outcomes computed
by multiplying the % ∆ with the pre-treatment mean of Y . % ∆ is the proportional
change (semi-elasticity) of collision outcomes after treatment and is computed by
taking exp(γ)−1. In Column (1), I include the entire sample of cameras. In Column
(2), I conduct the analysis for a sample of sites that I have full set of co-variates. In
Column (3), I include a vector of controls that captures the variation in demograph-
ics and labour outcomes that include population size, % of 18 to 25, Gross Annual
Pay & hours worked. In Column (4), I control for the annual average vehicle miles
travelled. In Column (5), weather controls are added into the speci�cation. In Col-
umn (6), I include a sample of non-camera sites that are eligible for camera instal-
lations into the estimation. In Column (7), I constraint the analysis to observations
just 3 years before and after from the year of installation. Bootstrapped standard
errors are reported in the parentheses. c p<0.10, b p<0.05, a p<0.01
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