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Abstract

We introduce a new point process, the dynamic contagion process, by gener-
alising the Hawkes process and the Cox process with shot noise intensity. Our
process includes both self-excited and externally excited jumps, which could
be used to model the dynamic contagion impact from endogenous and exoge-
nous factors of the underlying system. We have systematically analysed the
theoretical distributional properties of this new process, based on the piece-
wise deterministic Markov process theory developed by Davis (1984), and the
extension of the martingale methodology used by Dassios and Jang (2003).
The analytic expressions of the Laplace transform of the intensity process
and the probability generating function of the point process have been de-
rived. An explicit example of specified jumps with exponential distributions
is also given. The object of this study is to produce a general mathemati-
cal framework for modelling the dependence structure of arriving events with
dynamic contagion, which has the potential to be applicable to a variety of
problems in economics, finance and insurance. We provide an application of
this process to credit risk, and the simulation algorithm for further industrial
implementation and statistical analysis.

Dynamic Contagion Process

Mathematical Definition

The dynamic contagion process is a point process Nt, such that,

P
{

Nt+∆t − Nt = 1
∣

∣Nt

}

= λt∆t + o(∆t), P
{

Nt+∆t − Nt > 1
∣

∣Nt

}

= o(∆t),

where ∆t is a sufficient small time interval, and the non-negative intensity
process λt follows the piecewise deterministic dynamics with positive jumps,

λt = a + (λ0 − a) e−δt +

∫ t

0

e−δ(t−s)dY (1)
s +

∫ t

0

e−δ(t−s)dY (2)
s ,

where

• a ≥ 0 is the reversion level;

• λ0 > 0 is the initial value of λt;

• δ > 0 is the constant rate of exponential decay;

• Y
(1)
t =

∑Mt

i=1 Y
(1)
i ,

{

Y
(1)
i

}

i=1,2,...
is a sequence of independent identical

distributed positive random variables (externally excited jumps) with
distribution function H(y), y > 0, and Mt is a Poisson process with
constant intensity ρ > 0;

• Y
(2)
t =

∑Nt

j=1 Y
(2)
j ,

{

Y
(2)
j

}

j=1,2,...
is a sequence of independent identical

distributed positive random variables (self excited jumps) with distri-
bution function G(y), y > 0;

• The sequences
{

Y
(1)
i

}

i=1,2,...
,

{

Y
(2)
j

}

j=1,2,...
and the point process Mt

are assumed to be independent of each other.

The infinitesimal generator of the dynamic contagion process (λt, Nt, t) acting
on a function f(λ, n, t) within its domain Ω(A) is given by

Af(λ, n, t) =
∂f

∂t
+ δ (a − λ)

∂f

∂λ
+ ρ

(
∫ ∞

0

f(λ + y, n, t)dH(y) − f(λ, n, t)

)

+λ

(
∫ ∞

0

f(λ + y, n + 1, t)dG(y) − f(λ, n, t)

)

,

where Ω(A) is the domain for the generator A such that f(λ, n, t) is differen-
tiable with respect to λ, t for all λ, n and t, and

∣

∣

∣

∣

∫ ∞

0

f(λ + y, n, t)dH(y) − f(λ, n, t)

∣

∣

∣

∣

< ∞;

∣

∣

∣

∣

∫ ∞

0

f(λ + y, n + 1, t)dG(y) − f(λ, n, t)

∣

∣

∣

∣

< ∞.

Graphic Illustration

To give an intuitive picture of this new process, we present the figure below
for illustrating how the externally excited jumps Y (1) (marked by single arrow
↓) and self excited jumps Y (2) (marked by double arrow l) in the intensity
process λt interact with its dynamic contagion point process Nt.
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In this more general framework of the dynamic contagion process, the classic
Cox process with shot noise intensity, used by Dassios and Jang (2003) for
pricing catastrophe reinsurance and derivatives, can be recovered, by setting
reversion level a = 0 and eliminating the self excited jumps Y (2); The Hawkes
process (with the exponential decay), used by Errais, Giesecke and Goldberg
(2009) for modelling the portfolio credit risk in a top-down approach frame-
work, can be recovered, by setting the intensity ρ = 0 of the externally excited
jumps Y (1).

Laplace Transform of the Intensity Process λt

The conditional Laplace transform λT given λ0 at time t = 0, under the

condition δ > µ1G
, is given by

E
[

e−vλT
∣

∣λ0

]

= exp

(

−

∫ v

G
−1

v,1(T )

aδu + ρ[1 − ĥ(u)]

δu + ĝ(u) − 1
du

)

× exp
(

−G−1
v,1(T )λ0

)

,

where

µ1G
=:

∫ ∞

0

ydG(y), Gv,1(L) =:

∫ v

L

du

δu + ĝ(u) − 1
;

ĥ(u) =:

∫ ∞

0

e−uydH(y), ĝ(u) =:

∫ ∞

0

e−uydG(y).

The Laplace transform of the asymptotic distribution of λT is given by

lim
T→∞

E
[

e−vλT
∣

∣λ0

]

= exp

(

−

∫ v

0

aδu + ρ[1 − ĥ(u)]

δu + ĝ(u) − 1
du

)

,

and this is also the Laplace transform of the stationary distribution of {λt}t≥0.

Example: Jumps with Exponential Distributions

If both the externally excited and self excited jumps follow exponential distri-

butions, i.e. Y (1) ∼ Exp(α) and Y (2) ∼ Exp(β), then, under the stationarity

condition δβ > 1, the stationary distribution of {λt}t≥0 is given by







a + Γ̃1 + Γ̃2 for α ≥ β

a + Γ̃3 + B̃ for α < β and α 6= β − 1
δ

a + Γ̃4 + P̃ for α = β − 1
δ

,

where independent random variables

Γ̃1 ∼ Gamma

(

1

δ

(

a +
ρ

δ(α − β) + 1

)

,
δβ − 1

δ

)

; Γ̃2 ∼ Gamma

(

ρ(α − β)

δ(α − β) + 1
, α

)

;

Γ̃3 ∼ Gamma

(

a + ρ

δ
,
δβ − 1

δ

)

; B̃
D
=

N1
∑

i=1

X
(1)
i , N1 ∼ NegBin

(

ρ

δ

β − α

γ1 − γ2

,
γ2

γ1

)

, X
(1)
i ∼ Exp(γ1);

Γ̃4 ∼ Gamma

(

a + ρ

δ
, α

)

; P̃
D
=

N2
∑

i=1

X
(2)
i , N2 ∼ Poisson

( ρ

δ2α

)

, X
(2)
i ∼ Exp (α) ;

and γ1 = max
{

α, δβ−1
δ

}

, γ2 = min
{

α, δβ−1
δ

}

. B̃ follows a compound

negative binomial distribution with underlying exponential jumps; P̃ follows

a compound Poisson distribution with underlying exponential jumps.

Particularly, for the non-self-excited case, λT follows a shifted Gamma distri-
bution,

λT
D
= a + Γ̃5,

where
Γ̃5 ∼ Gamma

(ρ

δ
, α

)

,

which recovers the result by Dassios and Jang (2003); For the Hawkes process,
λT follows a shifted Gamma distribution,

λT
D
= a + Γ̃6,

where

Γ̃6 ∼ Gamma

(

a

δ
,
δβ − 1

δ

)

.

Probability Generating Function of the Point Process Nt

The conditional probability generating function of NT given λ0 and N0 = 0 at

time t = 0, under the condition δ > µ1G
, is given by

E
[

θNT
∣

∣λ0

]

= exp

(

−

∫ G
−1

0,θ
(T )

0

aδu + ρ[1 − ĥ(u)]

1 − δu − θĝ(u)
du

)

× exp
(

−G−1
0,θ (T )λ0

)

,

where

G0,θ(L) =:

∫ L

0

du

1 − δu − θĝ(u)
0 ≤ θ < 1.

An Application in Credit Risk

Our motivation of applying the dynamic contagion process to model the
credit risk is a combination of Duffie and Singleton (1999) and Lando (1998).
Duffie and Singleton (1999) introduced the affine processes to model the
default intensity. Lando (1998), the extension of Jarrow, Lando and Turnbull
(1997), used the state of credit ratings as an indicator of the likelihood of
default, and modelled the underlying credit rating migration driven by a
probability transition matrix with Cox processes in a finite-state Markov
process framework. However, we go beyond this and model the bad events
that can possibly lead to credit default, and the number and the intensity of
these events are modelled by the dynamic contagion process.

The point process Nt is to model the number of bad events released from the
underlying company. It is driven by a series of bad events Y (2) from itself
and the common bad events Y (1) widely in the whole market via its intensity
process λt. The impact of each event decays exponentially with constant rate
δ. We assume each jump, or bad event, can result to default with a constant
probability d, 0 < d ≤ 1, which measures and quantifies the resistance level.
Therefore, the survival probability conditional on the (initial) current inten-
sity λ0 at time T is Ps(T ) = E

[

(1 − d)NT

∣

∣λ0

]

, which can be calculated simply
by letting θ = 1 − d in the conditional probability generating function. By
setting the parameters (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7), the term
structure of the survival probabilities ps(T ) based on d = 2%, 10%, 20% and
100% are shown in the figure below.
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By contrast with Lando (1998), we possibly could consider different values
of d correspond to different credit ratings, by assuming these bad events are
all related to the company’s credit ratings.

We also provide a comparison for the survival probabilities based on three
main processes discussed in this paper: dynamic contagion process, Hawkes
process (by setting ρ = 0) and non-self-exciting process (by setting β = ∞),
with the same parameter setting and fixed d = 10%. The results are shown
in the figure below.
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We can see that, the dynamic contagion process, as the most general case of
the three processes, generates the lowest survival probability, and the differ-
ences between the other two processes explain the impact from the endogenous
and exogenous factors respectively. This process is capable to capture more
aspects of the risk, which is particularly useful for modelling the risks during
the economic downturn involving more clustering bad economic events.

Monte Carlo Simulation

To make easier for further industrial applications and statistical analysis, al-
ternatively, we derive the simulation algorithm for one sample path of the
general dynamic contagion process (Nt, λt), which applies to any distribu-
tion assumption for jump sizes, H(y) and G(y) for externally and self excited
jumps, respectively. Here, we use the same parameter setting under the ex-
ponential distribution assumption for the jump sizes, and for instance one
simulated sample path (Nt, λt) with T = 50 is provided in the figure below.
For comparison, the theoretical expectations E[λt], E[λt|λ0] and E[Nt] are also
plotted.
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