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Abstract

Many financial applications, such as risk analysis and derivatives pricing, depend
on time scaling of risk. A common method for this purpose, though only correct
when returns are iid normal, is the square–root–of–time rule where an estimated
quantile of a return distribution is scaled to a lower frequency by the square-root
of the time horizon. The aim of this paper is to examine time scaling of risk
when returns follow a jump diffusion process. It is argued that a jump diffusion
is well-suited for the modeling of systemic risk, which is the raison d’être of
the Basel capital adequacy proposals. We demonstrate that the square–root–
of–time rule leads to a systematic underestimation of risk, whereby the degree
of underestimation worsens with the time horizon, the jump intensity and the
confidence level. As a result, even if the square–root–of–time rule has widespread
applications in the Basel Accords, it fails to address the objective of the Accords.
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1 Introduction

The square–root–of–time rule is commonly assumed when financial risk is time aggre-
gated whereby high frequency risk estimates are scaled to a lower frequency T by the
multiplication of

√
T . One common application of the square–root–of–time rule is the

time scaling of volatilities, such as in the Black–Scholes equation where the T–period
volatility is given by σ

√
T . To take another example, a standard method for esti-

mating quantiles, and in particular value–at–risk1 (VaR), is by estimating a one day
VaR and multiplying it by

√
10. Indeed, this is the method recommended by banking

supervisors (see the Basel Committee on Banking Supervision, 1996), and is widely
used throughout the financial industry. But VaR has not just found prominence via
the external Basel regulations, it has effectively become a cornerstone of internal risk
management systems in financial institutions following the success of the J.P. Morgan
RiskMetrics system. For instance VaR and related measures are used to control, and
set limits to, traders’ positions.

The underlying distributional assumptions behind this method are quite stringent, and
are violated in most, if not all, practical applications. Since the distributional stylized
facts for returns are well documented, the reason for the prevalence of the square–root–
of–time rule must be a scarcity of robust alternative methods coupled with a lack of
understanding of the shortcomings of the square–root–of–time rule. Below we formally
analyze the biases introduced by the square–root–of–time rule applied to quantiles
when asset returns are driven by a jump diffusion. We demonstrate that the square–
root–of–time rule leads to a systematic underestimation of risk, whereby the degree of
underestimation worsens with the time horizon, the jump intensity and the confidence
level.

The time scaling of volatilities for instance implicitly depends on returns being iid
(identically and independently distributed), an assumption Engle (1982) argues is in-
correct because of the presence of volatility clusters. When applied to quantiles, the
square–root–of–time rule also depends on the normality of returns. It has been known
at least since Mandelbrot (1963) and Fama (1965) that returns exhibit excess kurtosis,
e.g. they are “fat tailed.” In general, the presence of fat tails introduces an additional
bias in applications of the square–root–of–time rule2 to quantile forecasts, such as in

1VaR is the quantile that solves ε =
∫ −VaR

−∞ f̂(x)dx, where f̂(x) is the estimated probability density
function of a financial institution’s return and ε is the confidence level, say .01. The reason we write
-VaR in the above equation is that VaR represents a critical potential loss, and we find it more intuitive
to think about a loss as of a positive number.

2If returns are conditionally normal but with volatility clusters, the square–root–of–time rule may
either over or underestimate quantile forecasts, (see e.g. Drost and Nijman, 1993). If returns follow an
unconditionally iid fat tailed distribution, then the square–root–of–time rule overestimates quantile
forecasts, see e.g. Feller (1971, VIII.8) and Dacorogna et al. (1999) for more on this. If returns are
fat tailed with volatility clusters the square–root–of–time rule may either over or underestimate the
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the pricing of path dependent derivatives and in risk management. For example, in
the pricing of barrier derivatives, a violation of iid normality implies that the knock-
out and knockin probabilities are different from what is assumed by standard pricing
models. It is in risk management, however, that violations of iid normality may have
the strongest impact. In this paper, we shall show that under reasonable assumptions,
the square–root–of–time rule applied to VaR underestimates the true VaR, and can do
so by a very substantial margin. This result is reminiscent of Ju and Pearson (1999),
where the estimated VaR underpredicts the true VaR because of superior information
possessed by the trader vis-à-vis the historically estimated VaR. If the trader knows
that the estimated VaR lies below the true VaR, she takes on more risk than allowed by
the (true) VaR risk limit. In our paper, underestimation arises from statistical reasons.

In order to measure the bias introduced by the square–root–of–time rule, a data gen-
erating process needs to be specified. The literature has seen two major approaches
to the modelling of fat tails in return series, fat tailed distributions (e.g. the Student–
t) and jump diffusion processes. In choosing between those two methodologies, one
must consider the intended applications. The fat tailed distribution approach gener-
ates fat-tailed return series by putting more mass in the tails than the normal does.
Each period’s return therefore is a bit more likely to be in the tail, but intuitively such
realizations in the tails occur “continuously in time.” This is a common assumption
in risk modelling, and often provides more accurate risk forecasts than an assump-
tion of normality. Unfortunately, no consensus exists as to which fat tailed return
distribution should be used, with the Student–t a common choice. Risk modelling
with continuous fat tailed distributions is further hampered by the problem that mul-
tivariate representations of fat tailed distributions either do not exist, are not unique,
or are computationally difficult. The bias in using the square–root–of–time to scale
quantiles in this case is established by Dacorogna et al. (1999) who demonstrate in
theory that if financial returns are iid fat tailed but do not follow the stable law, the
square–root–of–time rule overestimates risk.

While fat-tailed distributions may be more suited for day–to–day internal risk manage-
ment, jump diffusion models are better suited for the modelling of uncommon one–off
events, e.g. systemic risk. Jump diffusions define a mostly continuous return process
that is subjected to occasional discrete jumps, and the resulting distribution also ex-
hibites fatter than normal tails. Such models capture rare but large shocks to the
financial system over and above the normal day-to-day volatility. In particular, we feel
that jump processes are better suited for the modelling of systemic risk than the contin-
uous approach. Section 2.1 below provides a short survey of the relevant literature on
jumps. Recently, several different methods for modeling systemic risk from a financial
perspective have been proposed, e.g. Allen and Gale (2000), who model the domino
effect of bank failures in markets with incomplete interactions, Diamond and Rajan

quantile forecast.
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(2001) who model systemic events induced via a liquidity crisis, and Danielsson and
Zigrand (2001), who model systemic risk as arising from externality–induced excessive
risk–taking. Despite being in early stages, what links these approaches is the notion
that the financial system experiences a discrete transition from stable to crisis periods,
suggesting that a jump process model, with only downside jumps, is well–suited as a
statistical modelling methodology of systemic risk.

The fear of a systemic crisis is the driving force behind international capital adequacy
regulations, especially after the Asian and Russian-LTCM crises. In fact, the Basel
agreements are motivated by the notion that capital adequacy regulations are not
meant to address day to day risks but rather large systemic events. To quote the
General Manager of the BIS, Crockett (2000) “The quintessential micro–prudential
dictum is that financial stability is ensured as long as each and every institution is
sound (. . . ) This statement may strive for too much, because the occasional failure
of individual institutions is not the problem. Trying to avoid such outcomes risks
providing excessive protection, with the result that market disciplinary and allocative
mechanisms are weakened.” This view suggests that supervisors, in designing capital
adequacy regulations, focus primarily on systemic events, where the chosen regulatory
instrument should not be sensitive to day–to–day risks. The balance suggested by the
BIS is to use a particular quantile of the return distribution as the main control for
risk, i.e. the 99% 10 day holding period VaR.3 While deriving bank capital from this
VaR level may reduce systemic risk, in practice it is usually not possible to estimate
the VaR since it requires perhaps a minimum of 300 observations of 10 day returns,
suggesting that 12 years (250 trading days per year) are required for the estimation. As
a result, the Basel Committee on Banking Supervision (1996) suggests that financial
institutions estimate VaR at the daily frequency and scale it up to the 10 day frequency
by

√
10. It is here that the question of the validity of the the square–root–of–time rule

becomes especially pertinent.

Our main finding is that by applying the square–root–of–time rule to the time scaling
of quantiles of return distributions, risk is underestimated at an increasing rate as
the extrapolation horizon is extended, as the probability of a jump increases or as
the confidence level is raised. In particular, as the scaling horizon increases, the bias
introduced by the square–root–of–time rule grows at a rate faster than time. Since the

3A key objective of this paper is to examine time scaling of the regulatory 99% VaR. Our objective
is not to explore the optimality of the chosen regulatory regime. For instance, Ahn et al. (1999)
and Ju and Pearson (1999) have shown how traders can “game” the VaR, in the former paper via
options strategies, and in the latter paper due to the superior information about VaR that a trader
may have compared to the historically estimated VaR number. We also refer the reader to Artzner
et al. (1999) for a discussion of the incoherence of the VaR measure, and to Basak and Shapiro (2001),
Danielsson and Zigrand (2001) and to Danielsson et al. (2003) for a study of the, sometimes perverse,
effects of VaR regulation in equilibrium models. Instead, here we take them as given, and explore the
implications of a reasonable statistical model of systemic crises for the regulatory VaR measure.
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drift only grows linearly with time, and the Brownian part is only of order
√

t, this
result holds eventually for any jump diffusion process. We argue that these results hold
for reasonable parameter values and visualize them by numerical simulations presented
graphically towards the end of the paper. While an exact measurement of the bias can
be obtained, we provide simple approximations that may provide a useful rule of thumb
when the parameters are not known.

To augment the theoretical results, we also consider numerical simulations from a
stochastic process calibrated to the S&P–500 return. Even with upward drifts, for
reasonably long holding periods, we find that the square–root–of–time rule understi-
mates risk. When we consider short regulatory holding periods around 10 days, we
find that the square–root–of–time rule underestimates the true VaR when the market
underperforms historical averages, and overestimates the VaR when the market ex-
ceeds the historical average. On average, while the square–root–of–time rule may be
a poor approximation over many horizons, it performs best for horizons in the neigh-
bourhood of 10 days. The reason is that for a 10 day horizon, the underestimation
arising from the failure to address the systemic risk component is counterbalanced by
the overestimation arising from the historically positive drift.

From a policy perspective, our results illustrate the perversity of the square–root–of–
time rule. The supervisors imposed a VaR based capital requirement presumably to
minimize systemic risk, whereas the square–root–of–time rule all but eliminates this
aspect from the capital requirement by relying only on sources of risk that scale up
with the square-root of time e.g. the Brownian risk). The only downside risk that is
taken into consideration is thus the non–systemic one, which is the regular volatility of
wealth. As such, the square–root–of–time rule may be viewed as failing in its intended
task. Furthermore, efforts to extend the square–root–of–time rule to longer horizons,
quarterly and beyond, must be considered misguided, and a proper correction factor
needs to be applied carefully.

The structure of the paper is as follows. We discuss the benchmark model in section



2 The Benchmark Economy

2.1 Jump Models and Systemic Risk

While it has been known at least since Mandelbrot (1963) and Fama (1965) that
financial returns are fat tailed in the sense that the kurtosis of returns exceeds 3, no
consensus exists as to how to model the fat tails. The actual choice of a modelling
strategy depends on the underlying questions and on the theoretical models. For the
question of systemic risk in particular, the rare event when sizeable fraction of wealth
is wiped out, a jump model provides a useful approximation. Indeed, the reduced form
of recent models of systemic financial risk (see e.g. Allen and Gale, 2000; Diamond and
Rajan, 2001; Danielsson and Zigrand, 2001) is in essence a jump model.

Jump models have been widely applied in both theoretical and empirical finance. Our
model follows most closely the intensity-based bankruptcy model of Jarrow and Turn-
bull (1995). They assume that the intensity of the Poisson process which jumps from
the no-default to the default state is an exogenous constant. In our context there
is, given our assumptions, in essence little formal difference between the conventions
of recovery-of-treasury (the creditor receives upon default a fraction of an identical
but default-free bond) imposed by Jarrow and Turnbull (1995) and the “recovery-of-
market-value” (a fixed fractional recovery rate of the market value) assumed by Duffie
and Singleton (1999). Empirically, many authors have estimated jump models of asset
returns (e.g. Ball and Torous, 1983; Akgiray and Booth, 1988; Jorion, 1988; John-
son and Schneeweis, 1994), interest rates (e.g. Attari, 1999; Piazzesi, 2001), or of the
various derivatives with payoffs dependent on such underlying jump processes (e.g.
Merton, 1976; Ball and Torous, 1985; Carr and Wu, 2003). Most research in option
pricing follows Merton by assuming that the jump component is non–system(at)ic,
but more recently several authors have argued that in order to better understand the
data, and in particular option prices, the system(at)ic aspect of jumps needs to be
considered (see e.g. Jarrow and Rosenfeld, 1984; Naik and Lee, 1990; Schwert, 1990;
Kim et al., 1994; Bakshi et al., 1997). In particular the substantially negatively skewed
implied distribution of post-’87 out-of-the money put options would call for a jump-
diffusion model, possibly in conjunction with stochastic volatility. Bates (2000) and
Pan (2002) for instance argue that a jump-diffusion model with stochastic volatility
and asymmetric jumps is a more compatible with observed option prices post-’87 than
a pure stochastic volatility model. Estimated jumps are on average negative and quite
substantial, embodying the fear of further crashes. In view of the existing literature,
the wealth process in this paper can be viewed either as a diversified market portfolio
subjected to global systemic risk, or as a more specialized portfolio facing particular
risks, such as correlated default.

Our interest here is to consider the modelling of lower quantiles of returns distributions,
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and how assumptions about the time scaling of such quantiles affect the reliability
of the estimates. In particular, we focus on systemic risk where a rare but adverse
shock hits asset prices. For this purpose, a diffusion model with downward Poisson
jumps provides a useful approximation. Initially, we assume for simplicity that all
wealth is wiped out which allows us to derive our results in closed form. Subsequently
we allow for a partial wipe out in 5 and we show that the results are materially
unaffected. Still, we do not aim to build a jump-diffusion model with the realistic
market microstructure of internal day-to-day risk management, but we rather try to
focus only on the catastrophic systemic events that underlie much of regulation. More
realistic VaR environments with jumps can be found in Duffie and Pan (2002) for
instance.

2.2 Benchmark Jump Diffusion Model

Following Merton (1971), we assume that wealth Y is governed by a jump diffusion
process, where in the absence of a jump, the evolution of wealth follows a geometric
Brownian motion. A Poisson shock occurs at some random time τ , at which time
the portfolio value is wiped out and wealth thereafter is identically equal to zero by
self-financingness and by the absence of arbitrage. These dynamics can be formally
written as:

dYt =
(
µ +

1

2
σ2

)
Ytdt + σYtdWt − Ytdqt (1)

Here W = (Wt)t∈[0,T ] is a Brownian motion, µ is a constant and deterministic drift
parameter and σ is a constant and deterministic diffusion parameter different from
zero. q is the Poisson process driving the jumps, with constant and deterministic
intensity λ. The units of λ−1 are average number of years between systemic events. q
and W are stochastically independent processes.

This way of modelling wealth is a reduced form for the evolution of the value of a self–
financing portfolio. For instance, we can view dYt = θtdSt − (Stθt)dqt, where θ is the
vector portfolio process, and S is the vector price process. One could, at the expense
of further complications, assume that the value of only a subset of assets held, for
instance one particular desk or division of the financial institution under scrutiny, or
one particular asset class held (such as defaultable bonds or OTC derivatives contracts),
is subjected to such jump risk.

Applying Itô’s Lemma to the function ln(Yt) and integrating from time 0 to t we get
the expression for the wealth levels:

Yt = Y0 exp (µt + σ(Wt − W0))1{qt=0}
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where the indicator function 1{qt=0} = 1 if qt = 0 and zero otherwise. The continuously
compounded return process X(t, T ) ≡ ln(YT /Yt) follows directly:

X(t, T ) = µ(T − t) + σ(WT − Wt) + ln
(
1{qT −qt=0}

)
(2)

Conditionally on no jumps, X(t, T )/(T − t) is iid normal, while conditionally on a
jump, the return equals minus infinity, reflecting the total loss. Even though µ is not
the drift of the arithmetic instantaneous return (which is µ + 1

2
σ2), it is the drift of

the continuously compounded returns process X, and we shall therefore refer to µ as
“drift.”

We fix k to a unit of time, e.g. one day or k = 1/250, and analyze the VaR over a
horizon of ηk, e.g. ηk = 10 days. The relevant return is then

X(t, t + ηk) = µηk + σ(Wt+ηk − Wt) + ln1{qt+ηk−qt=0}

The VaR(η) at the ε ∈ (0, 1)-level with a horizon ηk > 0 can be deduced as follows,
using Φ to represent the standard normal distribution function:

ε = P(X(t, t + ηk) ≤ −VaR(η))

= P(µηk + σ(Wt+ηk − Wt) + ln1{qt+ηk−qt=0} ≤ −VaR(η))

= P(µηk + σ(Wt+ηk − Wt) ≤ −VaR(η)‖qt+ηk − qt = 0)P(qt+ηk − qt = 0)

+ 1 · P(qt+ηk − qt > 0)

= P

(
Wt+ηk − Wt√

ηk
≤ −VaR(η) − µηk

σ
√

ηk

∥∥∥∥ qt+ηk − qt = 0

)
e−λkη + (1 − e−λkη)

= Φ

(−VaR(η) − µηk

σ
√

ηk

)
e−λkη + (1 − e−λkη) (3)

We wish to solve the last equation for the unknown VaR function. For λkη < − ln(1−ε),
it is immediate that,4

VaR(η) = −σ
√

kηΦ−1
(
1 − (1 − ε)eλkη

) − µηk (4)

where Φ−1 : (0, 1) → R is the inverse function of Φ, and therefore,

4From (3), there is a solution for VaR (as given in (4)) iff the probability of a crash is not too high,
i.e. λkη < − ln(1 − ε). With a λ higher than that, the probability of a Poisson crash is itself higher
than ε, so that the joint probability of both the Poisson and the Brownian parts together being ε is
impossible: in (3) the right-hand side would be larger than ε for any VaR(η), and therefore does not
admit a solution. We shall therefore define VaR(η) = +∞ for λkη ≥ − ln(1− ε). But mostly we shall
assume that λkη < − ln(1−ε) in what follows, which is consistent with our interpretation of the Poisson
jump representing a rare systemic collapse. For future reference, we define η̄ ≡ η̄(ε, k, λ) ≡ − ln(1−ε)

λk .
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VaR(1) = −σ
√

kΦ−1
(
1 − (1 − ε)eλk

) − µk (5)

Losses worse than VaR can occur for two reasons: either the return is driven down by
a string of bad news as modelled by the Brownian motion, or a systemic Poisson jump
occurs. In order to show whether the square–root–of–time rule over– or underestimates
the true VaR, and assuming we know the true data-generating process, we need to
compare the proposed approximate VaR number

√
ηVaR(1) with the true VaR number

VaR(η). In order to do so, define the absolute and relative underestimation functions:

fa(η) = VaR(η) −√
ηVaR(1) (6)

fr(η) =
VaR(η)√
ηVaR(1)

(7)

Now it is evident that the square–root–of–time rule is invalid over longer horizons,
even in the absence of jumps, fat tails or time-varying volatility, for the drift matters
over longer horizons and the VaR would have to be scaled by time rather than by
the square–root–of–time. Indeed, it suffices to set λ = 0 in (4) and (5) to see that
fa(η) = (1−√

η)kµ
√

η < 0 in the realistic case of positive expected returns µ > 0 and
extrapolation η > 1: the approximative critical loss

√
ηVaR(1) is larger than the actual

critical loss VaR(η). From here we can verify when the square–root–of–time rule holds,
i.e. iff returns are iid normal with zero expected returns. Setting λ = 0, µ = 0 we see
that f(η) = 0 for all η ≥ 0. Alternatively, if λ = 0, then

VaR(η) = −σ
√

kηΦ−1(ε)

which is the standard VaR formula used in the financial industry.

3 A Zero Drift

In most applications of the square–root–of–time rule to risk management, it is assumed
that the drift is zero. There are several reasons for this. First, since most risk models
operate at high frequencies, assuming the drift is zero is relatively innocuous since
at those measurement horizons the drift is an order of magnitude smaller than the
volatility. The main problem is however that there is no obvious way to obtain the
drift, (see e.g. Merton, 1981), and any estimation of the drift term is bound to be very
inaccurate. In this section we assume that the drift is zero, and in the next section
extended our results to the case where the drift is positive.

It is easy to see from (4) and (5) that, in the absence of strictly positive higher–order
drift terms, the square–root–of–time rule underestimates the true VaR:
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Proposition 1 Assume λ > 0 and µ = 0. Then VaR(η) >
√

ηVaR(1) iff η > 1.

The extent of underestimation, whether measured in absolute (fa) or relative (fr) terms
is worse the larger the extrapolation η.

In other words, the actual critical loss at the ε confidence level, VaR(η), is larger than
the extrapolated critical loss,

√
ηVaR(1), iff we extrapolate, i.e. η > 1. This is true for

any level of volatility σ and any level of confidence. For instance consider daily risk, i.e.,
k = 250−1. The square–root–of–time rule recommended by the Basel Committee sug-
gests that η = 10, which means that the VaR on which capital requirements are based
is given by

√
10VaR(1 day), while the correct expression is VaR(10 days)=VaR(10k),

and we just showed that VaR(10 days) >
√

10VaR(1 day).

We can see the intuition from (3). A rise in η to η′ > η raises the probability of a
crash to 1 − e−λkη′

. Since the probability of a fall in wealth below VaR(η) is higher
conditional on a crash than conditional on no crash, the unconditional probability of
losses exceeding the previous VaR(η) rises, and it rises above ε. Therefore VaR will
have to be revised upwards, but a rise of VaR proportional to

√
η is not sufficient.

Indeed, if VaR and
√

η rise proportionally, only the additional Brownian risk, which

arises because of the longer horizon of evaluation η′−η, is considered, and Φ
(

−VaR(η)

σ
√

ηk

)
is constant. Therefore the unconditional probability of a loss exceeding even the new
VaR scaled up by the square-root is still larger than ε, and in fact VaR(η)/η needs to
rise.

But Proposition 1 not only shows that a longer extrapolation horizon ultimately leads
to underestimation, the magnitude of the error committed rises as well. In some
instances, the guidance papers to the Basel Accord suggest using the rule even for
quarterly periods and longer. One should be careful about such extrapolations and use
conservative scaling parameters.

3.1 Rule of Thumb

The bias introduced by the square–root–of–time rule can quickly be approximated by
simple rules of thumb of the form:

VaR(η) = ηcVaR(1) (8)

With a jump process the VaR is given by VaR(η) = −σ
√

kηΦ−1
(
1 − (1 − ε)eλkη

)
,

implying that in (8), c > 1/2. From (4) and (5) we know that VaR(η) = VaR(1)√
ηΦ−1(1−(1−ε)eλkη)

Φ−1(1−(1−ε)eλk)
≡ VaR(1)ηc. We find that to first order around η = 1,

c =
1

2
+

ln
(

Φ−1(1−(1−ε)eλkη)
Φ−1(1−(1−ε)eλk)

)
ln η

≈ 1

2
+

b

2
(1 + η)
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where b is a rapidly increasing function of the probability of a systemic crash over a
one day horizon, λk, and is given by

b =
λk(1 − ε) exp

(
λk + 2−1/2[Φ−1(1 − (1 − ε)eλk)]2

)
2−1/2(−Φ−1(1 − (1 − ε)eλk))

> 0

Viewed as a function of the horizon η, the square–root–of–time rule fails to scale VaR(1)
sufficiently up due to the risk of a collapse, and the proper scaling is faster than the
square-root by an amount that depends strongly and positively on η and λk. For
instance, we get the following table for different values of λ:

λ 1/2 1/5 1/10 1/25 1/50
b .0211638 .00765089 .00371025 .00145808 .000724831

Figure 1 illustrates the improved VaR computations when correcting the square–root–
of–time rule by the approximation method laid out above. We assumed λ = 1/25,
µ = 0, k = 1/250 and ε = .01.

4 The Benchmark Model with a Positive Drift

We argued that the zero drift assumption in the common practice of risk management is
partly due to the fact that estimating µ reliably is difficult. For instance, a hypothesis
of µ = 0 for the S&P 500 cannot be rejected at the 10% level. Suppose however
that the drift µ is strictly positive and known. Since some practitioner recognize
(Blake et al., 2000) that the presence of a strictly positive drift term leads to an
overestimation of risk, they presumably take this overestimation into consideration
when allocating risk and capital. Therefore even in that case, jumps lessen, and in
most practical situations reverse, this overestimation, leading to a situation where the
concerned financial institutions are potentially ill-prepared and/or undercapitalized.

The flavour of the following theorem can be summarized by saying that as long as the
drift is not too large, the square–root–of–time rule still underestimates the true VaR.
We relegate the proof to the Appendix.

Proposition 2 Assume that λ > 0.

For a given horizon η, the square–root–of–time rule underestimates the value-at-risk iff
µ is smaller than some critical µ̄ ≡ µ̄(η, k, λ, σ, ε). We have µ̄ > 0 iff η > 1.

The degree of underestimation is worse the larger the extrapolation, η, as long as the
drift term µ is not too large, µ ≤ µ ≡ µ(η, k, λ, σ, ε). We have µ̄ > µ if η > 1 and
µ̄ = µ if η = 1.
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Assume also that ε ≤ 1− 1
2
e−λk. The degree of underestimation is worse the larger the

likelihood of a crash, λ, no matter how large the drift µ or the horizon of extrapolation
η.

The expressions for µ̄ and µ can be found in the proof, and the functions are also

plotted in Figures 2 and 3 in the Appendix. The condition ε ≤ 1− 1
2
e−λk is implied by

ε ≤ 1
2
. Since VaR is about rare tail events, and that in practice ε ≤ .1, this condition

is not binding.

Proposition 2 says that as long as the drift term is small enough, the square–root–of–
time rule underestimates the VaR, and this error is worse the larger the likelihood of
a systemic event. Just as in Proposition 1, the larger the horizon of extrapolation, the
greater will the underestimation be, at least as long as it is not counterbalanced by a
strong drift term.

In order to assess the bias induced by the square–root–of–time, we perform numerical
simulations where the drift and volatility are calibrated to historical annualized values
of the S&P–500 index, (from beginning until 2002) i.e., 5.48% and 15.84%, respectively.
With λ = 1/25 and ε = .01, we can see from Figure 3 that µ ≥ .0548 from η =
3 onwards. In other words, for an extrapolation horizon of more than three days,
the square–root–of–time rule not only underestimates the true VaR, but the errors
committed increase with η.

To acquire a deeper understanding of the interrelation between normal market risk, as
modelled by the Brownian part and the drift part, and the systemic risk, as modelled
by the Poisson part, we provide a closer look at the function µ̄(η, k, λ, σ, ε) as depicted
in Figure 2. The shape of the function is qualitatively unaffected by the choice of
parameters k, λ, σ and ε (as can be verified from (10)). We see that µ̄ and µ rise as
the degree of extrapolation increases, and tend to infinity as η → η̄. The fact that
the critical drifts are increasing functions of η reflects the fact that for small intervals
of time, the probability of a systemic event is negligible, while the drift term, while
being very small, is less so. As the horizon of extrapolation widens, the drift term
scales up linearly with time while the probability of a systemic event as given by the
exponential distribution inherent in Poisson processes, increases exponentially with
time. Therefore, there will be, for each given drift, an η large enough for which the
jump term dominates the drift term, and the square–root–of–time rule underestimates
the true VaR. In particular for η close enough to η̄, no drift can be large enough
to induce overestimation, contrary to what was found above in the λ = 0 case of no
jumps.
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5 Near-Catastrophic Systemic Crashes

The models discussed above assume that in a crash all wealth is wiped out. That is
appropriate assumption for a non diversified portfolio, where, say, the default of a single
firm, country or world region, may render all equity or debt worthless. Alternatively,
in a systemic crisis, even well diversified portfolios may become worthless. But more
generally, we now analyze the scenario under which only part of the wealth is wiped
out in a systemic event.

In the case of a partial wipe–out of wealth, the results remain qualitatively the same.
We explicitly only consider the case where the drift is zero. In this case, regardless
of how small the fraction of the wealth that is wiped out in a crash, an application
of the square–root–of–time rule always leads to a downward bias in quantile forecasts.
The reason is intutively because the algebra presented in Section 3 remains the same
if the support of the continuously compounded return over the relevant horizon ηk,
in the event of a systemic crash, is contained in (−∞,−V aR]. This implies that if
the systemic crash is severe enough, the portfolio return almost surely cannot recover
losses greater than the VaR over the specified scaling horizon. However, since in
actuality there is always some probability that Brownian motion moves out of the
range (−∞,−V aR], we now extend our model by considering a crash occurring at a
random time τ ∈ [0,∞) that only wipes out a fraction 1 − δ of total financial wealth.
The recovery rate δ is constant and deterministic. δ = 0 corresponds to full wealth
wipe out in a crash. We assume that, to first order, only one systemic event occurs
in the given interval of time. The possibility that more than one systemic events can
happen in the time interval simply reinforces our results.

If a systemic event occurs at a time τ ∈ [t, T ] when wealth is Yτ , wealth drops by
a fraction 1 − δ. Thereafter it follows the lognormal process given by the diffusion
part of the stochastic differential equation (1). Thus at time T > t, conditional
on a systemic event happening in [t, T ), YT = Yτδ exp(µ(T − τ) + σ(WT − Wτ )) =
δYt exp (µ(T − t) + σ(WT − Wt)). Combining all possible cases, we get:

YT = Yt exp (µ(T − t) + σ(WT − Wt))1{qT −qt=0}
+ δYt exp (µ(T − t) + σ(WT − Wt))1{qT −qt>0}

= Yt exp (µ(T − t) + σ(WT − Wt))
[
1{qT −qt=0} + δ1{qT −qt>0}

]
with a returns process of

X(t, t + ηk) = µηk + σ(Wt+ηk − Wt) + ln[δ + (1 − δ)1{qT −qt=0}]

VaR is then the solution to

ε = Φ

(−VaR(η) − µηk

σ
√

ηk

)
e−λkη + Φ

(−VaR(η) − ln δ − µηk

σ
√

ηk

)
(1 − e−λkη) (9)
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This solution always exists and is unique and continuously differentiable. As before,
we need to show that VaR(η) >

√
ηVaR(1) and that VaR(η) > VaR(η′) when η > η′,

i.e. that ν(η) ≡ VaR(η)√
η

> ν(1) = VaR(1) and that ν is increasing in η, for η > 1

in a relevant range. In differential form, this amounts to showing that ∂ν(η)
∂η

> 0.
The following Proposition is the extension of Proposition 1 for an economy in which
systemic events can have various degrees of severity δ ≥ 0. However, since there is no
explicit solution for VaR, and since the relation defined by (9) involves essentially non–
algebraic implicit functions, definite results can only be shown under more restrictive,
but plausible and realistic, assumptions:

Proposition 3 Assume µ = 0 and λ > 0. There is a η > 1 such that VaR(η)/
√

η is
increasing in η, and in particular VaR(η) >

√
ηVaR(1) for η ∈ (1, η), if any one of the

following assumptions applies:

(i) δ < δ, for some δ ∈ (0, 1).

(ii) δ > δ̄, for some δ̄ ∈ (0, 1), and λkη ≤ 1.

What Proposition 3 says is that for recovery rates δ close enough to either 0 or 1, the
square–root–of–time rule underestimates the true VaR, and does so increasingly poorly
for larger η. The result for the case where δ is close to 0 follows by continuity from
the benchmark case δ = 0. The case δ close to 1 is shown by a separate argument.
Extensive numerical simulations performed by the authors suggest that these results
are valid much more generally and seem to hold for all values of δ ∈ [0, 1), as can
be seen in Figures 7 and 8. Looking at those two figures, further discussed below, it
becomes clear that the relative risk errors fr(η) = VaR(η)/(

√
ηVaR(1)) arising from

the square–root–of–time rule are roughly the same for any potential losses above 25%,
and that for all levels of λ and all reasonable extrapolation horizons η.

6 Discussion

Our results indicate that applying the square–root–of–time rule to the time scaling
of quantiles results in a downward bias of risk forecasts, provided the scaling horizon
is sufficiently large. Intuitively, the explanation lies in how the three key factors,
Brownian motion, drift, and Poisson process behave under time scaling. Roughly
speaking, the Brownian part increases at the rate

√
t, with the drift growing at a

linear rate t, and the potentiality of the jump component growing exponentially. This
suggests that the jump component eventually dominates.
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6.1 Numerical Simulations

The key question must be how relevant this is in practice. In order to assess the bias
induced by the square–root–of–time, we perform numerical simulations where the drift
and volatility are calibrated to historical annualized values of the S&P–500 index, i.e.,
5.48% and 15.84%, respectively.

6.1.1 Zero Drift and Full Wealth Wipe Out

In the first set of numerical simulations we follow standard practice in the risk man-
agement industry and assume the drift is zero. Table 1 shows the VaR from using
the square–root–of–time rule (

√
ηVaR(1)) as well as the correct VaR (VaR(η)), while

Figure 4 shows the relative error in the square–root–of–time rule for a range of holding
periods (η) and crash frequencies (1/λ). As expected, the lower the crash frequency
and the shorter the holding periods, the smaller the bias is. The reason is that as
the probability of a crash in a given time period goes to zero, so does the importance
of the jump component. It is, however, at the other range where the results become
more interesting. Longer holding periods or higher crash probabilities λ imply that the
square–root–of–time rule becomes increasingly inaccurate because a systemic crash
becomes increasingly likely. For λ and η both large, there is a region in which the
probability of the systemic event approaches ε. In that region the true VaR tends to
infinity, implying that the relative error tends to infinity as well.

6.1.2 Positive Drift and Full Wealth Wipe Out

If the drift is positive the bias is less severe. While for large enough η the square–root–
of–time rule always leads to a downward bias in risk estimates, this may not be the
case if η is small since in that case the Poisson term is dominated by the drift term.
Consider Figure 2 where we plot the critical drift value, µ̄ as the holding period, η,
increases. The region beneath the curve is the region in which the square–root–of–time
rule underestimates the true VaR. At the 10–day level, the critical drift term equals
7%, which roughly translates into a number above the mean real rate of return of the
index (5.5%). In other words, during the periods with average or lower than average
expected returns, the square–root–of–time rule underestimates the true VaR in the
particular case where η = 10, and conversely for the periods with expected returns
on the higher end of the historical scale. Results are however more clear-cut for η
larger than a month. Indeed, the Poisson term dominates the drift term for reasonable
parameter values, even though we chose λ to be quite small in Figure 2.

This can also be seen in Figure 5, which is identical to Figure 4, with the exception of
the drift which is set to the average S&P drift. The ratio of the true to the time-scaled
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VaR is above 1 almost everywhere, but it is below 1 for holding periods of around 10
days and expected years to a systemic event of above 25 years. As the holding periods
increase, the ratio exceeds 1 at an increasing rate. Figure 6 shows a slice of Figure 5
where the holding period η = 10.

It is interesting to note that with historical (µ, σ), the 10 day horizon extrapolation
is least prone to underestimation, at least if crashes are rather unlikely. The reason
is that the historical drift term leads to an overestimation bias that compensates the
underestimation bias arising from the jump term.

6.1.3 Partial Wealth Wipe Out

Finally, we consider the case where only part of the wealth is wiped out. Figures 7 and
8 show the relative error of the square–root–of–time rule as we change the fraction of
wealth wiped out, the holding period, and the crash frequency. Interestingly, as the
wiped out level (1− δ) increases from zero, there is first a rapid increase in the square–
root–of–time rule error, but the full effect is reached fairly soon, in all cases before the
loss factor 1 − δ exceeds 20%. This is why we can claim that the predictions of our
model carry over to more realistic environments with partial crashes. For reasonable
parameter values and levels of extrapolation, the relative error with a 25% wipeout is
qualitatively the same as with a complete wipeout.

In Table 2 we consider 1% VaR where 25% of wealth is wiped out on average every 25
years, where the holding periods range from 10 to 60 days. The error introduced by
the square–root–of–time rule increases along with the holding periods, with the ratio
of the true VaR to the time scaled VaR increasing from 1.02 to 1.42, respectively.

As similar picture emerges in Table 3, where we consider a similar event, for a 25 day
holding period, where the probability level ranges from 5% to 0.004%. The relative
error introduced by the square–root–of–time rule increases from 1.02 to 1.62.

7 Conclusion

Regulatory recommendations and common derivatives pricing models implicitly as-
sume iid normal returns, implying that the square–root–of–time can be used to scale
volatilities and risk. While this may be a relatively innocuous assumption for many
applications, it can be a critically flawed assumption in other cases, such as in pricing
and regulation in market environments prone to systemic events. The time scaling of
risk has emerged as an important tool in the calculation of regulatory capital (it is all
but required by the Basel Capital Accords (Basel Committee on Banking Supervision,
1996, 1998)), and sees an important role in the regulation of pension funds.

We consider the implications of time scaling quantiles of return distributions by the
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square–root–of–time when the underlying stochastic process is a jump diffusion. We
feel that jump diffusions are an appropriate methodology for capturing the risk of
systemic events, which while rare are large in magnitude. They are also instrumental
in understanding the smile and smirk effects in implied option volatilities (refer for
instance to Pan (2002) or Carr and Wu (2003)), which are oftentimes argued to reflect
the market’s anticipation of such crashes.

Our results indicate that an application of the square–root–of–time rule to the forecast
of quantile-based risk estimates (such as Value–at–Risk) when the underlying data
follows a jump–diffusion process is bound to provide downward biased risk estimates.
Furthermore, the bias increases at an increasing rate with longer holding periods, larger
jump intensities or lower quantile probabilities. The reason is that the scaling by the
square root of time does not sufficiently scale the jump risk, i.e. the systemic part
of the market risk. We therefore believe the square root of time to be fundamentally
flawed, not because it is false per se, but because it is systematically biased and fails,
depending on the application, to account for the exact events that it set out to model
in the first place, namely the potential for catastrophic or near-catastrophic one-off
events. There are indications that the Basel Committee is in fact beginning to realize
such problems, for in a more recent technical guidance paper (Basel Committee on
Banking Supervision, 2002) it is no longer suggested that the square–root–of–time
rule be used, but that “in constructing VaR models estimating potential quarterly
losses, institutions may use quarterly data or convert shorter period data to a quarterly
equivalent using an analytically appropriate method supported by empirical evidence”
(emphasis added).

In an exercise of revealed preferences, the anecdotal evidence that very few major
financial institutions seem to have ever violated the square-root of time scaled Basel
constraints may indicate, alongside alternative reputational considerations, that they
too are aware of the fact that the mechanism underlying those regulations biases the
VaR downwards by not properly accounting for the “big ones.”

A Appendix: Proofs

Proof of Proposition 2

We assume that parameters are in their respective domains, η > 1 and 0 < λkη <
− ln(1 − ε). By definition, fa(η) ≥ 0 iff

σ
√

ηk
[
Φ−1(1 − (1 − ε)eλk) − Φ−1(1 − (1 − ε)eλkη)

] − µk
√

η(
√

η − 1) ≥ 0

i.e. iff

µ ≤ µ̄(η, k, λ, σ, ε) ≡ σ
[
Φ−1(1 − (1 − ε)eλk) − Φ−1(1 − (1 − ε)eλkη)

]
√

k(
√

η − 1)
(10)
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The proof of monotonicity of fr and fa with respect to η, the second assertion, goes
along similar lines, denoting the standard normal density by φ:

∂fr(η)

∂η
> 0

⇔ ∂VaR(η)

∂η
>

1

2
η−1/2VaR(1)

⇔ µ <
2σ

√
kη(1 − ε)λeλkη

φ(Φ−1(1 − (1 − ε)λeλkη))
≡ µ

It is then easy to see that the monotonicity of fr implies the monotonicity of fa.

As to the last assertion,

∂(VaR(η) −√
ηVaR(1))

∂λ
=σ

√
kη

(ε − 1)keλk

φ(Φ−1(1 − (1 − ε)eλk))

− σ
√

kη
(ε − 1)kηeλkη

φ(Φ−1(1 − (1 − ε)eλkη))

The partial derivative is strictly positive iff

eλkηη

φ(Φ−1(1 − (1 − ε)eλkη))
>

eλk

φ(Φ−1(1 − (1 − ε)eλk))

⇔ 2 ln η + 2λk(η − 1) − [Φ−1(1 − (1 − ε)eλk)]2 + [Φ−1(1 − (1 − ε)eλkη)]2 > 0

The first two terms are positive, while the last two terms taken together are positive
if ε ≤ 1 − 1

2
e−λk, a sufficient condition of which is to require ε ≤ 1

2
. If that is the

case, then both expressions in the second term square negative numbers, the second
of which being larger in absolute value given that the function Φ−1 is monotonically
increasing on its domain (0, 1) and negative for values below 1

2
.

Proof of Proposition 3

We want to show, at least for reasonably short horizons and for reasonable values of
δ, that ν(η) ≡ VaR(η)/

√
η is larger than ν(0). Furthermore, in order to show that

underestimation worsens with η, we’d like to show that ν(η) is increasing in η.

Now ν solves the following equation, modified from equation (9):

F (ν, η, ; ·) ≡ Φ

( −ν

σ
√

k

)
e−λkη + Φ

( −ν

σ
√

k
− ln(δ)

σ
√

ηk

)
(1 − e−λkη) − ε = 0 (11)

For simplicity, denote ξ ≡ −ν
σ
√

k
− ln(δ)

σ
√

ηk
. The strategy of the proof is as follows. Assume

that η = 1 and show that there exist values of δ for which the statements hold, and
then infer that the same must hold in neighbourhoods of those δ.
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The first and obvious reference δ is to choose δ = 0, and the following lemma confirms
the importance of the benchmark economy for it shows that the VaR in the economy
with partial losses converges to the economy with total loss as losses worsen:

Lemma 4 limδ→0 ν(η; δ) = −σ
√

kΦ−1(1 − (1 − ε)eλkη), ∀(η, λ, k, ε) such that λkη ≤
− ln(1 − ε).

Proof :
First of all, we show that limδ→0 ν(·; δ) < ∞. We argue by contradiction. Assume that
limδ→0 ν(·; δ) = ∞. Then in the limit we get from (9) that 0 + Φ(·)(1 − e−λkη) = ε.
Since we assume that λkη ≤ − ln(1 − ε), ε > 1 − e−λkη, and since Φ ∈ [0, 1], we get

a contradiction. Therefore limδ→0 ξ = limδ→0
−ν

σ
√

k
− ln(δ)

σ
√

ηk
= +∞, and the statement

follows from (11).

We can conclude, by the continuity of ν, that the square–root–of–time rule underesti-
mates the true VaR for all δ sufficiently close to 0, and for all η satisfying the condition
in the statement of the previous lemma.

From the implicit function theorem applied to (9) we find that ∂ν(η)
∂η

> 0 iff

G(η; δ, ·) ≡
Φ

(−ν(·)
σ
√

k
− ln(δ)

σ
√

ηk

)
− ε +

1

2

ln(δ)

λσ(kη)3/2
(1 − e−λkη)φ

(−ν(·)
σ
√

k
− ln(δ)

σ
√

ηk

)
> 0

It can easily be seen that G > 0 for all δ sufficiently close to 0, since limδ→0 G = 1− ε.
Indeed, from the previous lemma we know that limδ→0 ν < ∞, and therefore that
limδ→0 ξ = +∞, and so the first two terms in G converge to 1− ε. The last term in G
can be written as −α ln(δ) 1√

2π
exp(− ν

σ
√

k
− ln(δ)

σ
√

ηk
)2, and we now show that it converges

to zero. Dropping constants on the way, limδ→0 − ln(δ) exp(−[ν2 + 2 ln(δ)ν + (ln(δ))2])
≤ lim− ln(δ) exp(−2 ln(δ)ν − (ln(δ))2) ≤ lim− ln(δ) exp(−2 ln(δ)ν̄ − (ln(δ))2, since

ν is bounded in δ by some ν̄. Therefore, by Hotelling’s rule, lim − ln(δ)
exp((ln(δ))2+2 ln(δ)ν̄)

=lim 1
2[− ln(δ)−v̄] exp((ln(δ))2+2 ln(δ)ν̄)

= 0. This tells us, for δ sufficiently close to 0, that an

increase in η leads to an increase in ν(η), i.e. to a worsening of the underestimation.

Ideally, we’d like to show monotonicity for all δ, but the essentially non-algebraic nature
of the problem does not allow one to do so. But we can single out the other end of
the spectrum as well. Now assume that δ = 1. Then we know that ν(η) = ν(1), all
η ≥ 1. Denoting K ≡ δ−1, we now show that ∂G/∂K > 0 evaluated at K = 1 iff
eλkη < 2ηkλ + 1.

Denote α ≡ 1−e−λkη

2λσ(kη)3/2 , in which case G(K) = Φ(ξ(K))− ε−α ln(K)φ(ξ(K)). From the
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implicit function theorem,

dν

dK
=

(1 − e−λkη)φ(ξ)

K
√

η
[
e−λkηφ(− ν

σ
√

k
) + (1 − e−λkη)φ(ξ)

]
so that

dξ

dK

∣∣∣∣
K=1

=
e−λkη

σ
√

ηk

Inserting these expressions into

dG

dK
= φ(ξ)

[
dξ

dK
[1 + α ln(K)ξ] − α

K

]

we get
dG

dK

∣∣∣∣
K=1

= φ

(
− ν

σ
√

k

)[
e−λkη

σ
√

kη
− α

]
> 0

iff eλkη < 2ηkλ + 1.

Since G(η; 1) = 0, ∀η ≥ 1, and G is decreasing in δ, G(1; δ) > 0 for some δ < 1.

Now as η increases from 1, ∂ν(η)
∂η

> 0 and therefore ν(η) > ν(1). In addition, slightly
raising η further will in turn increase ν further since G is still strictly positive, and
so forth. This shows that for δ in a neighbourhood of 1, the square–root–of–time
rule is underestimating the true VaR, at least for reasonable extrapolation horizons,
eλkη < 2ηkλ + 1, a sufficient condition being λkη ≤ 1.
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B Appendix: Tables and Figures

Table 1: 1% VaR on a $1000 portfolio with S&P–500 volatility, varying λ−1

10 and 20 day VaR, k = 1/250, ε = 0.01, σ = .1584, µ = 0. Ratio is fr(η) = VaR(η)/(
√

ηVaR(1)). 1/λ

indicates the expected time of crash in years. 1 − δ = 100% indicates the fraction of wealth wiped out

in crash.

Measure Expected crash time in years 1/λ

10 20 30 40 50

VaR(10) 79.5 76.3 75.4 74.9 74.7√
10VaR(1) 74.2 73.9 73.9 73.8 73.8

Ratio 1.07 1.03 1.02 1.02 1.01

VaR(20) 128.6 112.5 109.3 107.9 107.1√
20VaR(1) 104.9 104.6 104.4 104.4 104.4

Ratio 1.23 1.08 1.05 1.03 1.03

Table 2: 1% VaR on a $1000 portfolio with S&P–500 volatility, varying η

VaR on a $1000 portfolio of S&P–500 Volatility. k = 1/250, ε = 0.01, σ = .1584. 1/λ = 25 indicates the

expected time of crash in years, and 1 − δ = 25% indicates the fraction of wealth wiped out in crash.

Ratio is fr(η) = VaR(η)/(
√

ηVaR(1)).

Measure Holding period in days η

10 20 30 40 50 60

VaR(η) 75.7 110.5 140.5 170.0 203.4 257.6√
ηVaR(1) 73.9 104.5 128.0 147.8 165.2 181.0

VaR(η)/(
√

ηV ar(1)) 1.02 1.06 1.10 1.15 1.23 1.42
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Table 3: 1% VaR on a $1000 portfolio with S&P–500 volatility, varying ε

VaR on a $1000 portfolio of S&P–500 Volatility. η = 25, µ = 0, σ = 0.1584, k = 0.004. 1/λ = 25

indicates the expected time of crash in years, and 1 − δ = 25% indicates the fraction of wealth wiped

out in crash. Ratio is VaR(η)/(
√

ηVaR(1)).

Measure Quantile probability ε

0.05 0.01 0.004

VaR(25) 84.3 125.7 216.1√
25VaR(1) 82.5 116.8 133.5

Ratio 1.02 1.08 1.62
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Figure 1: Absolute error VaR(η) − ηcVaR(1)
Notes: This graph depicts the absolute errors arising from the use of scaling approximations to VaR(η).
The top curve represents the errors using the square–root–of–time rule (c = 1/2), the bottom curve
represents the errors arising with the rule-of-thumb correction (c = 1

2
+ b

2
(1+η)) mentioned in the text.
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Figure 2: The critical drift function µ̄ as a function of η
σ = .1584, δ = 0, k = 1/250, ε = 1/250, λ = 1/55.
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Figure 3: The critical drift functions µ (bottom) and µ̄ (top) as functions of η.
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Figure 4: Relative error in the square–root–of–time rule, S&P-500 annual volatility,
zero mean, full wealth wipeout, and 1% VaR

µ = 0, σ = .1584, δ = 0, k = 1/250, ε = 0.01. Ratio is VaR(η)/(
√

ηVaR(1)). 1/λ indicates the expected
time of crash in years.
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Figure 5: Relative error in the square–root–of–time rule, S&P-500 annual volatility
and mean, full wealth wipeout, and 1% VaR

µ = 0.0548, σ = .1584, δ = 0, k = 1/250, ε = 0.01. Ratio is VaR(η)/(
√

ηVaR(1)). 1/λ indicates the

expected time of crash in years.
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Figure 6: Relative error in the square–root–of–time rule, S&P-500 annual volatility
and mean, full wealth wipeout, and 1% 10 day VaR

µ = 0.0548, σ = .1584, δ = 0, k = 1/250, ε = 0.01, η = 10. 1/λ indicates the expected time of crash in

years.
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Figure 7: Relative error in the square–root–of–time rule, S&P-500 annual volatility,
zero mean, partial wealth wipeout, and 1% 10 day VaR

Model parameters are: µ = 0.0, σ = .1584, ε = 0.01, η = 10. Ratio is VaR(η)/(
√

ηVaR(1)). 1/λ

indicates the expected time of crash, 1 − δ is the fraction that is wiped out in the crash.
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Figure 8: Relative error in the square–root–of–time rule, S&P-500 annual volatility,
zero mean, partial wealth wipeout, and 1% VaR

Model parameters are: µ = 0.0, σ = .1584, k = 1/250, ε = 0.01, 1/λ = 25. Ratio is VaR(η)/(
√

ηVaR(1)).
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