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Abstract

Inequality measures are powerful tools of applied welfare analysis. However, to use
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properties of inequality measures can often be used to simplify these problems and
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Estimation of Inequality Indices

1 Introduction-

Inequality indices appear both as central concepts in the formal analysis of welfare economics,
and as empirical tools applied to micro-data on incomes or to grouped data published by
statistical agencies. There is an important interface between theoretical abstraction that is
appropriate to the ethical interpretation of income distribution and the practically-minded
approach te estimation. The purpose of this chapter is to examine this interface and to point
out some of the statistical pitfalls in implementing measures of economic inequality.

The sceptical reader might be wondering why the whole subject cannot just be
delegated to a few page references in a standard statistical text. The answer to this is
twofold: the special nature of income distribution data, and the special nature of inequality
indices. Sections 2 and 3 deal with these special features. Then sections 4 and 5 focus upon
the classical estimation problem using micro-data; section 6 extends the analysis to encompass
the problem of estimation from grouped datz, and section 7 deals with problems of data

contamination

2 Data Issues

There are several reasons for claiming that data on income distribution deserve special
treatment in the analysis of statistical distributions. For example some have drawn attention
to the empirical curiosity of regularity of the shape of income distributions across a wide

variety of historical, cultural and economic circumstances: this information about shape is



often useful in staristical modelling for the purposes of estimating income inequality indices.
However the primary reascn for treating the subject as special lies in the way in which
personal income data are usuzlly coflected and the way in which they are interpreted in
inequality analysis. This is apparent fromn a brief consideration of two fundamental topics:
the meaning of "income"” and of the “income receiver".

Applied welfare economics is usually individualistic so that a distribution of income
by persons is what is particularly relevant in an economic application. Furthermore when we
consider the economic question of what income 15 - or what it is suppesed to represent - it
is often that case that one wants it to be defined in a way that is sufficiently comprehensive
for it to be a reasonable proxy for a person’s economic welfare. For some narrowly-defined
concepts of "income” the data may be collected on an individual basis: for example earnings
of employees, personal wealth of testators. However, data on broadly-defined income
concepts are usually collected at family or household level.

These considerations usually mean that two types of adjustment must be made in order
to interpret distributional data in an economically ¢coherent fashion. First, househeld income
must be adjus}ed to allow for differences in needs between households - the eguivalisation
process. Second, each household must be weighted in the distribution to reflect the number
of persons - the reweighting process, One can then analyse the distribution of equivalised
incomes amongst individual persons.’

To express these ideas in a formal model assume that agreement has been reached on

the defirition of an income concept and on the appropriate way in which incomes are to be

' See Cowell (1984), Danziger and Taussig (1979) for a fuller discussion of this issue.
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equivalised. For each household write w for the weight of the household in the distribution®
and x the income te be imputed to each hovsehold member. In this treatment we will abstract
from the problem of there being inequality within each family. Write W for the set of
household weights: if the weights are automaticallty normalised then W=[0,1], otherwise it is
R, the non-negative half-line. Also write X for the set of all incomes which we will usuajly
agsume (0 be B the real line: this allows us to address the important practical problem of zeros
and negative values of the income variable. An income distribution can then be characterised
by the (bivariate) distribution function F:WxX—[0,1] with standard properties; F(w.x) gives
the proportion of the population with weight < w and incomes £ x. Write the space of all
valid income distribution functions as /. Key conceps in distributional analysis can then be
expressed as functionals of the bivariate distribution . For example the mean u: =X is

defined as p(F)= Jwx dF(w.x)/w dF(w,x).

3 Ineguality

What is an inequality measure? In principle it is just a statistic defined on the space of
income distributions I: #—R, but it is given economic meaning by endowing it with properties
derived from an appropriate axiom system or some social-welfare function, These properties
are what make the statistic special. Chief amongst them is the wransfer principle (Dalton,
1920), which may be expressed thus: if distribution G is derived from F by a mean-preserving

spread’ (or a sequence of such spreads) then NG)>I(F). The class of statistics defined by

* As we have seen the weights could be Just the number of persons in the family.

However note that weights play other toles as well - see section 4 below.
* The meaning of this is discussed further in Atkinson (1970},
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this principie alone is however rather large and unwieldy; and there is some difficuity in
agreeing on further restrictions that would generate a single generally applicable subclass.
We shall find it expedient to examine a number of subclasses of inequality measures that
together encompass most of the indices that are in common use.

Assume for the moment that the weights are normalised by definition so that

[w dF{w,x)=1.* Then we may define the basic class:

KF) = ¢ { fw 0(pF)) aF(wi), w(P) )
where yf is monotonic increasing its first argument. For this to make sense as an inequality
measure the function @ has to be convex in its first argument. An important sub-case of (1)

is given by the rormalised basic class (I;) which consists of measures of the form:

= . (2)
w(fw ¢(.u{n] dF(w.3) ptFJ]

where the function ¢ is defined on incomes that have been normalised by the mean. The
class I, defined by (2) overlaps with, but is distinct from, the class of decomposable

inequality indices {1} which can be characterised as measures of the form

v { [w 600 dFwm), p(P) . 3)
In both (2) and (3) ¢: X —R is an evaluation function which, in view of the transfer principle,
muast be convex; W R SR in {(1)-(3) is a cardinalisation Junction. An example of the
inequality index that belongs to the Ly class {2) but not the K class (3) is the relative mean

deviation

* If this assumption is not satisfied then the w term in (1) to (10) below must be replaced
by wiw dF(w.x); likewise w’in (10).



x -1| : #
jwlm—n dF(w.R)

an example of the inequality index that belongs to I, but not I; is Kolm's index defined

as

%[ fw of =l dFGe,ny - 1], 5

where P is a positive parameter (Kolm, 1976a, 1976b}. Measures that belong 1o both L, and

I, are characterised by the I, class of indices that has as its typical member

¥ ( Iee(®, (M), (6)

where [5; is one of the I class of generalised eniropy measures, given by:

" dFf(wz) - 1 ] (7)

s

and where ac R is 2 parameter reflecting sensitivity to inequality in different pants of the

a 1
Il F) 5 —m—
ol a-a

distribution (Bourguignon, 1979; Cowell, 1930; Sherrocks, 1980, 1984} An important

subclass of (6} is given by the Atkinson indices:

1-£ !
ISP :=“w -F-E‘F)-] dF(w,x) ]n (8)

where £20 is an inequality aversion parameter (Atkinson, 1970).  Although the measures i:‘?}

and (&) have different cardinalisation fuoctions they are ordinally equivalent in that



1
IXE) = [ [-a) IgF) + 1] ®)

for @<l where £ = 1-ot. *
Finally an important index that does not belong to the basic class at all is the Gini

coefficient

1

— {[ww’ | -~ 3’| AF(wx)dFw'x" ; (10
#(F) If B
historically this index has occupied such an important place in the lteratere that it deserves

separate gpecial treatment.

4 Estimation from micro data

Now consider how inequality measures would be implemented in practice. The problem is
simplified considerably if we restrict attention to particular special classes of inequality
measures such as Iy and I, in section 3. First let us extend the notation of section 2 by

introducing the following family of weighted moments about zero

B o) 1= [ Wt x® dF(w, ). (11)

forany g € {0,1,2}, oe R. The moment u (F) can be interpreted as the "effective population

* The formulas (7} and (8) have appropriate limiting forms for some parameter values.
The evaluation function becomes - log (x} in the case =0 {£=1), and for the formula (7) the
evaluation function becomes x log (x} in the case a=1, which correspond’s to Theil's first
index (Foster, 1983; Thetl, 1967).



size",f and u,,(F} is effective total income; mean income is given by p(F)=p ,,(F)¥u ,(F). The

inequality measures in the L, class can then be written

=l

1 p‘]g p‘lﬂ -1 {12}
“-a #1'1

for 0,1 (if the weights are normalised by definition then g (Fl=1).

Now let us examine the empirical counterparts to these concepts. Assume that a
simple random sample® of n observations is drawn from the distribution F; each observation
Is a pair (w,x), where w; is the weight value of observation / in the sample, and x; the
cormesponding income value of observation i, i=1,2,..n. Let §, be the distribution consisting
of n point-masses, one at each cbservation or data point. The counterpart of the moments

(11) for the sample are given by

m, = p(S) (13)

for any g € {C,1,2}, ceR. Equation (13) may be rewritten:

L
1
?ﬂq“ = : z W[q -xta a {14}
i=1

An unbjased estimator of (12} {a member of the L, class) is then given by

¢ If income-receivers are households and if the weight on each observation corresponds
to the number of persons in each household, then u 4 is exactly the number of persons in the
popuiatiot:.

7 The analysis is easily extended to these cases also by intreducing modified moinents -
see Cowell (1989a) for a full treatment.

? On the general issues of sampling see Hansen et al. (1953), Kish (1965), Levy and
Lemeshaw {1991), Scheaffer er al. (1990).
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An important practical point to note here is that in the empirical distribution the weights now
play two roles. Apart from their use in reweighting the distribbtion by households to get the
individual income distribution they may also incorporate sample weights: the weight for
observation § is then w=wiw® where w! is the ith observation's sampling weight and w* is the
household-to-individual weighting factor.

The extension of this analysis to the I, class is straightforward and requires the

moments

HoP) = [ W7 Bx) dFOw), (16)

and the sample counterpart of (16):

.
My i= % g w $(x), (17)
The L, class and the Gini coefficient - equations (2) and {10) - can be expressed in terms
of the sample in the same sort of way, However for examining its statistical behaviour it is
helpful to rewrite the expression for the sample Gimi as foliows. Let (w,x,) be the

cbservation with the ith smallest x-value in the sample. Then the Gini coefficient can be

expressed as a weighted sum of the x;

TS = § I (18)

where the weights are given by:



i
- _ " [ ] -
X, 1= 2 wo -w, - 1|, i=12,.n. (1%)
IR — 121 3~ "

The form {18) is particularly convenient for use in computational algerithms.’

3 Inference from micro data

Let us begin with the most convenient subcase, &, the intersection of the normalised basic
class and the class of decomposable inequality measures.

The basic result can be seen by means of an example based on a simplified version
of Ige. Suppose we take a case where w=] for everyone and a non-normalised form of (12),
namely pu,,; this is itself a valid inequality measure for € > 1 and o < -1, and the sample

estimate is of course m,,. The variance of the random variable m,, in this special case is

(2% 5 ) ofeg o]

A =l jwl inl

where &'is the expectations operator. In view of the facts that &xx)= & & if i+ and that

&= u,, we find that (20} becomes
1 2
;{FZEI: _'F'l.l] (21)

and an unbiased estimate of this from the sample is provided by

? See Cowell (1989b),



— [ Maza ~ . ] (22)

w-1

The mair results for the I, class follow from this. If we express the population and sample

moments as vectors:
u= {#:mﬂuuula)r (23)

m := (mgmy,m )T (24)

then in the light of {6) and (7) we can see that the population and sample values for a
member of L, can be written in the form “(u) and ¥(m). The following holds

asymptoticaily (Rao, 1973, page 387):

ya[m-p] ~ N@, E) (25)
where Z:=[g;], 0; = n cov(m,m, ), i,j=0,1,0 eand ¥ denotes the norrnal distribution. From this

we obtain as an asymptotic result:

yn [ F(m) - Fp)l - NO,nP), (26)

where

- lgrT
.~;E"F b S (27)
and ¥, denotes the vector differential:

g, .- [ 27w IFG) S¥w) T (28)
Oy OBy Oy,

The quadratic form V in {27) is the asymptotic sampling variance of the inequality statistic,

X is the variance-covariance matrix of the sample moments and ¥, encapsulates the role of



the cardinalisation in the sampling variance. In applying this result to the case of the class

I, we have:

[ 2
o ~Hyo Ha “H P My " Hy gHyp

2
B o= | i Bubyy Bz Hu Hoger “HB1aHy | 0 (29}

2
| 2o b Bren " FrdM Ba2e " Hia
whatever the cardinalisation of the ineguality measure. For the specific cardinalisation

represented by the I, class we would have:

w1
v, - B0 | jgfe gRue g | (30)
I HFa By

The bottom right-haad term in (29) corresponds to the expression cbtained for the variance
in the elementary case (21): it would be the only relevant term if the data were unweighted
and one had independent information about the true mean of the distribution. The
neighbouring off-diagonal terms show that if the mean is to be estimated from the sample,
then its covariance with the income-evaluation function ¢ must be accounted for; likewise the
remaining off-diagonal terms in Z illustrate the way individual weights are correlated with
income {terms involving u,;) and with the incomz-evaluation function ¢ (bottom-left and top-
nght in the matrix}: this correlation depends upon sample design and inherent population
heterogeneities which are inherent in inequality measurement. '* The variance of the inequality
estimate in the case of weighted data could be farger or smaller than the corresponding
variance in the unweighted case.

This methodology can be extended to inequality indices that do not belong to the I

class such as the relative mean deviation (Gastwirth, 1974) although the formulas for the

'* For further discussion of these issues see Coulter e al. { 1996).
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standard errors are not 50 neat. It can also be applied to order statistics which form the basis
for empirical ftmplementation of Lorenz curves and so also to the Gini coefficient.!

The normality of the sampling distribution (26} means that it is straightforward to
apply standard statistical tests to problems involving distributional comparisons. For example
a straightforward "difference-of-means” test could be applied to test whether inequality in one
year was higher than that in another."?

As T have emphasised, these results are valid asymptotically. The assumption is
sometimes made that sample datz en income distribution wiil, of their nature, have a large n
so that in practice the issue of sampling error can be neglected as being of secondary
importance. However this should not be assumed to be true in general. First, for some
particularly sensitive indices (for example the coefficient of variation) the standard error of
the estimate of the inequality index may be large even for apparently large samples. Second
it is often the case that the particular problem of economic interest requires a subsample that
is of fairly modest size. Furthermore the sample or subsample may be so small that the
asymptotic results which are commonty invoked are invalid.® Under these circumstances it
may be appropriate to use statistical methods which involve resampling with ("the bootstrap™)

or without ("the jackknife") replacement using 5, as raw materials.'* Bootstrap estimates have

"' The underlying theory of the sampling distribution of order statistics was developed by
Heeffding (1948) - see also Siliitto {1969). On the Gini coefficient see also Nygird and
Sandstrém (1981}, Cowell (198%a), Glasser {(1962), Sandstrdm er ol (1985, 1988).

12 Cf Bishop er al. (1991), page 463 in an analogons application using Lorenz ordinates
¥ See Maasoumi (1994},

" For a discussion of the bootstrap and jackknife approaches see Bhattacharya and
Qumsiyeh (1989), Efron (1979, 1982}, Hall, (1992), Rubin (1981}, Shao and Tu (1995); see
2lso Kish and Frankel (1970) for a discussion of cases where samples are complex. For an
application of the bootstrap and jackknife to inequality statistics see Mills and Zandvakiii
(1995), Yitzhaki (1991). '
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the advantage of a smaller sampling variance than their jackknife counterparts, but are usnally

much more time-consuming computationally.

6 Problems with grouped data

Most of the early studies on income distribution and inequality had to be done using grouped
data. Even today, when micro-data sets on income are commonly available, estimation from
grouped data has an important role to play: some data are available only in grouped form for
reasons of confidentiality or pelitical sensitivity, some countries just do not release micro-
data. "Grouped datz" usually means a data set presented in the following form. X, the set
¢f all incomes, is partitioned into a set of % intervals {X,, X,,.., X,} where X—[a, @t
i=12,...k; in irterval { we may have only few specific items of information such as the total
population frequency in the interval and the mean of the interval.

Apart from extending the results on sampling errors,’ two other issues arise. First,
given that some information grouping will have been lost in the process of grouping what
bounds ¢an be put on estimates of the inequality measures, and second what central value
between those bounds is appropriate?

The issues are conveniently expressed using the basic class of ineguality measures; in

the case of grouped data a typical member of this class can be expressed:

PR

B = ¢| Y [wowpP) dFws , pd| O
i=h

L

-]
We do not know what the detail of the distribution F is within the intervaf X, but we could

'* On this see Gastwirth er al. (1986).
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make some alternative extreme assumptions that are consistent with the known partial

information. In particular we can find distributions F; and F, such that
1{F}) <= KF) < I{Fy) (32)

for 2 large class of inequality measures, and for a minimal number of prior restrictions on F.
Assume that the inequality index [ satisfies the transfer principle. If we know g, the mean
of interval i, then F; {(providing a lower bound on ) can be found by assuming that the
distribution: within X,, is just a pointmass at g, and F, (giving a least upper bound on ) is
found by assuming that there are two point masses within X, - one at o, and the other
arbitrarily close to a,,,, - in proportions chosen so that the implied mean equals .!¢

The second issue raises the question of what method of interpolation cne should use.
The idea iz to estimate F by a collection { 13}: i=1,2,...k} of within-interval distribution
functions. Clearly there is a large number of candidate functions for possible use: what
constitutes a "good” interpolation? We could think of simplicity, ease of interpretation or
flexibility of form as appropriate criteria, but the touchstone for an interpolation method is
surely the performance of inequality estimates using that interpolation. Perhaps the most
straightforward interpolation methaod is the simple histogram where each F, is rectangular over
X, but this will be in general be inconsistent with grouped data where interval means are
known. However the only slightly more complicated sphif-histogram interpolation provides
very satisfactory results: the interpolated distribution is rectangular over each subinterval [a,
#) and [g;, a,,).  Although the method is unsophisticated in that it just produces a
discontinucus "stepped” density function, it performs as well as more complex interpolation

algorithms in terms of the inequality estimates that it provides. Remarkably one finds that

'® For other cases with finer or coarser information about the intervals see Cowell (1991)
and Gastwirth (1975), Gastwirth and Glauberman (1976).
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unsophisticated and sophisticated interpolation rules alike yield results that are approximated
by a very simple rule for basic-class inequality measures: using the bounding methods
discussed (32) you take % of the lower-bound estimate of the inequality index and add it to
% of the upper-bound value.'” Of course the quality of inequality estimates from grouped data
will depend on the way in which X has been partitioned into component intervals and the
information about the distribution within each interval. What is crucial is the availability of
data on interval means: & intervals with information about frequencies and interval means
gives much more accuracy than 2k intervals with information about frequencies alone.'®
Finally let us consider some problems related to intervals I and & which have been
glossed over in the above discussion. If X is R, then a,=0; otherwise a, could be unbounded
below, that is the bottom interval might just be infinitely wide so as to accommodate
indefinitely large losses; a,,, is usually seen as inherently more problematic in that it is
commonly assumed that X is unbounded above. These extreme cases usually require special
treatment: typically one models the distribution in the open interval with a functional form

that has suitable asymptotic properties.'

7 See Cowell and Mehta (1982). In the case of the Gini coefficient instead of a (%4,%4)-
rule you have a corresponding (¥5,%)-rule - see Cowell (1995, page 116). For further
discussion of the implementation of the interpolation methods see the Appendix in Cowell
(1995).

** For discussion of how the interval boundaries should be chosen see Aghevli and
Mehran (1981), and Davies and Shorrocks (1989).

" For example in many cases the Pareto distribution is used, which is given by

]
]
0

where x, and ¢ are parameters to be estimated from the top one or two intervals. For the
method estimation see Cowell (1995, pages 160,161) and Needleman (1978).

Fx) =1 -
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7 Robustness

The final problem area in the field of inequality estimation concemns the effect of data
- contamination on estimates of inequality indices. In a sense all data should be regarded as
potentially contaminated. However carefully the sample may have been designed, however
carefully interviewing and coding procedures are carried out, in practice tiresome errors will
creep in. The errors could be the result of human fallibility or of wilful misreporting;
sometimes they are actually the result of misunderstanding (weekly for monthly income) or
of data coders trying to be helpful (recoding negative incomes as smail positive values ).

To see the implications of this for the problem of inequality measurement let us
express data contamination in an analytically tractable form. Suppose F is the true (but
unobservable) income distribution so that I(F) is the true amount of inequality in the
population. Now let #* be an elementary perturbation distribution which consists of a point
mass at income y; this can be represented as the probability distribution:*

1 ifw=1andxzy

HO%w, x) = (33)
0 otherwise

and from (33) we may define the following mixture distribution:

G = [1-6]F + 6HY (34)
where the parameter & captures the importance of the perturbation. It is, of course, the

mixture distribution G§{”’ that is actually observed. To quantify the impact of the

contamination upon the statistic under consideration we may use the concept of the influence

2% This specification ensures that, while we continue to use the same notation as in earlier
sections, the weights w play no role hear. For the standard case see Cowell and Victoria-
Feser (1996a).
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function? In the present case this is given by

G - 1
IF(y; I, F) = lim (63 - KB (35)
30 o
or, where the derivative exists, by
I [0
¥y I, F) = w (36)
06 5=0

The influence function is a tool that characterises the sensitivity of a statistic to "dirt” in the
data: it quantifies the importance of an infinitesimal amount of contamination upon the value
of the statistic. Here the statistic is the estimator of the inequality measure and (36) indicates
to what extent estimated inequality is stable in the presence of a small proportion of arbitrary
extreme observations. The influence function captures information about the bias of the
estimate of the inequality measure.” It is important to know how the IF will behave for
various types of data contamination for a wide class of inequality measures and, in particular,
to know whether it can be unbounded for contamination at some point. If it were unbounded
this would imply that a single observation - if sufficiently extreme - could drive the inequality
measure by itself.
Let us compute the IF for the class I;;. Substituting (7) into (36) we obtain

which becomes

?! See Hampel (1974), and Hampel et al. (1986).

% It is the first-order term in the linear expansion of the asymptotic bias of the estimator -
see Hampel et al. (1986).

17



. 3 IG(GY)
FQy; Ige, F) = ——G;-—f—
é=0
@37
1 g [wat[U-61dFwx) + 5dHO(w)]
~q 00 o\e
a-a F(Ga) i
y* + |wx®dF(wp) [ a-1 - ﬂ—]
F(y; Ige, F) = J B(F) (38)

[&*-alp (P)*

Equation (38) neatly illustrates two aspects of the contamination problem. First, the
evaluation function itself may be unbounded for contamination at some point on the income
line. A typical example of this is I;; with o<0 (ordinally equivalent to the Atkinson index
with inequality aversion parameter £>1): if the point of contamination y is close to zero then
¥°, the first term in the numerator of (38), becomes very large, which means that a false
observation of a very low income may have an overwhelming impact upon the estimate of
the inequality index. The other aspect is that the influence of contamination on the mean
may play a rdle. Again in (38) we can see that the term in parentheses in the numerator will
be unbounded if ¥ is unbounded: this implies that a false observaticn of a very large income
can have such an impact on the mean that it seriously distorts estimates of the inequality
index.

There are several strategies for dealing with this problem. In many cases researchers
use informal screening methods to weed cut what appear to be alien observations by eye: this
has the obvious disadvantage of arbitrariness. Alternatively one could model the distribution
- or part of it - using an appropriate functional form (such as the Pareto distribution,

lognormal or gamma) and estimating the parameters of the fitted distribution using robust



techniques (Cowell and Victoria-Feser, 1996a). Finally one could carry out a sensitivity
analysis of inequality estimates on systematically "trimmed" data from which a proportion
of extreme values have been removed (Cowell and Victoria-Feser, 1996b).

Two instructive lessons which may be drawn from this analysis may appear surprising
in the light of conventional wisdom on inequality measures and their estimation. The first
is that the cardinalisation function is important. This is evident from the specification of
in (1)-(3): the explicit dependence on the mean u and the fact that the mean is a non-robust
statistic will mean that different cardinalisations of the same inequality ordering have
fundamentally different statistical properties. To illustrate this contrast the standard definition
of the Kolm index (5) (which is non-robust because of the mean) with the ordinally equivalent

form
_}}“‘w e dFw,x) - 1], (39)

which 1s robust. The second lesson is that the problem will not go away with increasing

sample size, in contrast to the issues discussed in sections 4 and 5.

8 Concluding remarks

Inequality analysis involves constructing a practical bridge between ethical or mathematical
principles that are used to give meaning to the concept of inequality, and the nitty-gritty of
data-handling and processing that are the stuff of competent applied economists and
statisticians. The basic questions which the practical analyst must address can be summarised
as: (1) where have the data come from and what may have happened to it along the way? and

(2) how do these practical issues affect the choice of tool for distributional analysis?

10



By addressing these questions intelligent implementation of inequality concepts can
perhaps assist in clarifying the picture of developments in income distribution, and in

influencing national economic policies.
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