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Abstract

Wealth inequality has been sharply rising in the United States and across many other
high-income countries. Due to a lack of data, we know little about how this trend has un-
folded across locations within countries. Investigating this subnational geography of wealth
is crucial, as from one generation to the next, wealth powerfully shapes opportunity and
disadvantage across individuals and communities. Using machine-learning-based imputation
to link newly assembled national historical surveys conducted by the U.S. Federal Reserve
to population survey microdata, the data presented in this paper addresses this gap. The
Geographic Wealth Inequality Database (“GEOWEALTH”) provides the first estimates of
the level and distribution of wealth at various geographical scales within the United States
from 1960 to 2020. The GEOWEALTH database enables new lines of investigation into the
contribution of spatial wealth disparities to major societal challenges including wealth con-
centration, spatial income inequality, social mobility, housing unaffordability, and political
polarization.
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Introduction

Following a four decade period of sustained growth in wealth inequality in the United States,
less than 10 percent of families now possess 70 percent of national wealth (Kuhn et al., 2020;
Saez and Zucman, 2016; Piketty and Zucman, 2015). The trajectory of rising national wealth
inequality resembles similarly unfavorable long-term patterns of income polarization and declin-
ing intergenerational mobility (Goldin and Katz, 2009; Song et al., 2020). For historical income
and intergenerational mobility dynamics, there is a growing realization that these prevailing
trends have, in fact, arisen from a strongly differentiated subnational geography (Sampson,
2019; Kemeny and Storper, 2022; Connor and Storper, 2020a). In contrast, we still know very
little about the geography of wealth inequality and how it has changed over time.

This knowledge gap not only limits our understanding of broader societal trends in inequality,
but also the social, economic, political, and even epidemiological consequences of concentrated
wealth. (Neckerman and Torche, 2007; Yellen, 2014) Specifically, wealth inequality has previ-
ously been linked to the local provision of public goods (Côté et al., 2015; Baumgärtner et al.,
2017), social mobility (Hansen, 2014; Acolin and Wachter, 2017; Chetty et al., 2017; Connor
and Storper, 2020a), support for populism (Cramer, 2016; Rodŕıguez-Pose, 2018; Broz et al.,
2021), and the health of local economies (Moretti, 2010; Couture et al., 2019). Despite the
role of wealth in giving rise to disparities in income (Piketty et al., 2018), wealth and income
represent distinctive facets of economic inequality, with potentially different roots and implica-
tions (Killewald et al., 2017; Cowell et al., 2017). There is therefore a great need for focused
investigation into the changing geography of wealth within and beyond the United States.

This article presents a new source of information on long-term geography of wealth in the
United States: The Spatial Wealth Inequality Database (“GEOWEALTH”). GEOWEALTH
provides estimates of the level and distribution of wealth at various geographical scales within
the United States from 1960 to 2020. These estimates were generated through the applica-
tion of machine-learning-based imputation to link newly assembled national historical surveys
conducted by the U.S. Federal Reserve to population survey microdata. The GEOWEALTH
database not only enables new lines investigation into the causes and consequences of spa-
tial wealth inequality in the United States, but also a flexible methodological framework for
generating estimates of personal wealth across a range of geographical and historical contexts.

The previous limitations on our understanding of the geography of wealth reflects several key
constraints in terms of data and measurement. The stock of a households’ wealth is typically
measured as the value of its assets net of total debts, across a range of asset types, such as cash
holdings, real estate, and financial investments. Unlike income flows, which are reported in the
census, few public data sources report on personal assets and debts, or on their constituent
components. Our understanding of how individuals’ wealth in the U.S. has changed over time
comes from confidential administrative data linked to taxes (Piketty et al., 2018) or from a
range of smaller household surveys (Killewald et al., 2017). While each has advantages and
disadvantages (Kuhn et al., 2020), concerns around confidentiality mean that none of these
data sources can be directly used to describe meaningful spatial disparities in wealth. The
estimates provided in the GEOWEALTH database do not face confidentiality constraints and
thus facilitate detailed spatiotemporal analysis of wealth dynamics.

Importantly, the estimates of wealth inequality provided in the GEOWEALTH database
are derived from multidimensional measures of assets and debts. Most of what was previously
known about the geography of wealth was confined to the housing market (Gyourko et al., 2013;
Ganong and Shoag, 2017). This is because home values and mortgage information are reported
in several public data sources, including in tabulations and extracts of the decennial census. But,
while important – especially for those who are less affluent – home values are only one among
several channels through which wealth can vary across locations. In practice, across American
households, home values and net wealth are only moderately correlated (r = 0.535, p < 0.001,

1



Figure 1: The geography of wealth and local wealth inequality, 1960-2020
Note: For the period 1960-2019, Panel (A) describes the evolution of Gini coefficients tracking inter-regional
inequality in terms of average household income and wealth across U.S. commuting zones, defined using 1990-
vintage commuting flow data. Wealth estimates come from the GEOWEALTH dataset that is the primary
output of this study. Income series is estimated based on U.S. Census population survey microdata (Decennial
and American Community Survey), from IPUMS (Ruggles et al., 2022). Note that this panel shows that wealth
gaps between places has grown much more sharply than income gaps. Panel (B) visualizes the correlation between
1960 and 2020 measures of local wealth inequality – that is, levels of household wealth inequality within each
commuting zone, again measured using Gini coefficients. The positive but only moderately strong correlation
between local wealth inequality suggests a mix of continuity and turbulence in the ranks of more and less wealth-
unequal locations in the United States.

based on authors’ calculations using Bureau of Labor Statistics’ Survey of Consumer Finances
2015-16 data). The GEOWEALTH database therefore provides insight on wealth inequality, as
measured from a much broader range of asset types. This work also contributes to a broader
effort to using big data and computation to inform efforts to tackle issues of inequality and
equity (O’Brien, 2022; Chetty, 2021).

The framework used to construct the GEOWEALTH database relies on the application of
machine-learning-based imputation. We generate predictive models of household wealth using
ensemble learning, applying rich survey information from the Federal Reserve’s Survey of Con-
sumer Finances (SCF) as a means to predict wealth among households in Census population
surveys that include geographical identifiers. The end result is a dataset that permits descrip-
tion of inter-place variation in wealth (‘geography of wealth’), as well as the distribution of
wealth within individual local economies (‘local wealth inequality’). The resulting data allows
researchers to track the evolving geography of wealth and wealth inequality between 1960 and
2020 across more than 700 local labor markets that span the entirety of the U.S.

Our initial investigation of the spatial and temporal patterns of the GEOWEALTH database
reveals three key features of the changing geography of wealth in the United States (see Fig.1).
First, Panel A reveals that the distribution of wealth between regions has become steadily more
unequal since 1970. US wealth holdings have become increasingly concentrated in a smaller
set of regions. Second, inter-regional wealth disparities have growing more sharply than inter-
regional income disparities. This confirms earlier intuition that spatial wealth inequalities
require investigation over and above the study of income inequality. The sharp exacerbation of
wealth inequality over this period make this a particularly urgent topic for further research.
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Finally, Fig.1 Panel B reveals patterns of both turbulence and persistence in the distribution
of wealth within regions since 1960. Economies in the South (purple) are particularly notable
in having high levels of wealth inequality from 1960 through to 2020. High levels of wealth
inequality in the South is therefore a long-term feature of the region. In the Midwest, however,
inequality started out relatively low in 1960 but has worsened considerably over the last six
decades. The worsening of inequality in the Midwest over this period is consistent with findings
from studies of regional income inequality (Manduca, 2019; Kemeny and Storper, 2022) and in-
tergenerational mobility (Connor and Storper, 2020b), perhaps pointing to the interdependence
and common underlying sources affecting different facets of spatial inequality. Our publication
of the GEOWEALTH database provides new avenues for investigating the causes, consequences,
and common coherence, of these patterns.

Methods

We use the public-release files of the Federal Reserve’s Survey of Consumer Finances (SCF) that
spans the 1989-2019 period. Making use of the multiple household demographic and income
attributes that are present in SCF, we predict household total wealth, gross assets and debts
for households in successive waves of public-use Decennial and American Community Survey
(ACS) microdata from the U.S. Census Bureau, obtained from IPUMS (Ruggles et al., 2022).
Using Census households’ place of residence information, we are able to generate estimates
of the sub-national geography of net wealth and wealth inequality at various scales, including
metropolitan areas and commuting zones.1

In the absence of directly-observed, geographically-identified wealth data, our approach
offers key strengths. Like other surveys that record information on wealth, such as the Survey
of Income and Program Participation (SIPP), SCF includes relevant demographic correlates.
Unlike SIPP and other surveys, however, SCF includes detailed information on household wealth
and incomes. Crucially, SCF-based variables capturing distinct categories of income, including
wages, investment, and business income, closely matching those found in Census population
surveys. The result is that imputation from SCF to these surveys is not forced to rely chiefly on
demographics for which we know there to be meaningful, geographically-conditioned unobserved
heterogeneity in relation to income (and potentially, to wealth). Put another way, we know that
the economic characteristics of individuals with observably equivalent demographic features and
educational attainment differ based on location (Combes et al., 2008). Thus, by capturing
not just demographics, but also detailed income information, housing tenure and value, our
imputation model generates superior wealth predictions. Our approach also benefits from the
fact that missing wealth data in the population surveys are ’missing completely at random’:
the mechanism driving missingness will not be a source of bias in prediction (Rubin, 1976).

Beyond the unparalleled depth of detail about wealth and income in the SCF, these data
offer the best basis for prediction because of their reliability as a source of information about
the full range of the wealth distribution (Killewald et al., 2017). While tax-derived data may
capture the very top of the distribution, the SCF will better describe wealth for middle-income
households whose housing-centered assets are not sources of taxable income, as well as low-
wealth households that may pay little or no taxes (Kuhn et al., 2020). Meanwhile, oversamples
for rich households should improve coverage at the top of the wealth distribution.

Our construction of the data comprises three steps: (1) build a model of wealth using the
SCF; (2) predict wealth using Census population survey data; and (3) estimate wealth and
wealth inequality at various spatial scales.

1Although the data underlying this study enumerate characteristics of human subjects and their households,
they have been fully anonymized by the agencies responsible for the data. The study nonetheless obtained
approval from the Social Sciences, Humanities & Education Research Ethics Board at the University of Toronto.
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Step 1: Build a model to predict household wealth

Using the SCF data, we build and combine a set of stacked ensemble models (’ensemble combi-
nation’) to arrive at the most accurate available predictions of household wealth. As a general
approach, stacking involves the combination of a number of predictive models (Breiman, 1996b;
Zhou, 2012). Typically, a set of base (or Level 1) models are trained on a subset of the data. A
second-level model is then fit on a separate subset of the data, using the Level 1 predictions as
inputs. The aim in principle is to garner improvements in prediction that result from bringing
together a diverse (relatively uncorrelated) and accurate set of models.

We chose to use stacked ensembles based on a careful comparison between different poten-
tial approaches. We evaluated the ensemble combination relative to alternative treatments of
net wealth, including modelling the inverse hyperbolic sine transformation of net wealth, and
taking the net difference between models separately predicting gross wealth and debts. We
also evaluated the performance of each ensemble relative to the individual constituent models
that comprise it. Details of comparisons between our preferred approach and other models
are found in the Performance Analysis section; these demonstrate that our stacked ensembles
jointly outperform available alternatives.

Our stacked ensemble is made up of seven base models: generalized linear regression (GLM),
elastic net regression (EN), random forest (RF), gradient boosted trees (GB), neural network
(NN), support vector machine (SVM), and K-nearest neighbors (KNN). Note that some of
these ’standalone’ models are themselves ensembles. In particular, random forests are known as
’bagged ensembles’ – bootstrapped aggregations of individual decision or regression trees, while
boosted models are ensembles of sequentially grown trees (Breiman, 1996a; Hastie et al., 2009).
For the Level 2 model, we estimate a simple linear regression.

To produce a final predicted value of wealth for each household, we combine the outputs of
four separate ensembles. First, we estimate the probability of having positive wealth; 8.9% of
households in the SCF sample have either no wealth or are in debt. If the predicted probability
is at or above the decision threshold (which we vary by Census year in the imputation step), the
fitted value of a positive wealth ensemble model is chosen, built using only data on households
with some positive value of wealth. If the predicted probability is below the threshold, a further
binary stacked ensemble predicts whether the household in question has zero or some quantum
of negative wealth. If the latter, a stacked ensemble estimates the quantum, built using data
only for households with negative wealth. The combination of different ensembles also has
an advantage over other approaches in that we can calibrate levels of inequality by altering
the decision threshold at which we classify households as either having wealth or not. As we
discuss in the Technical Validation section below, adjusting the threshold can alter some of the
inequality estimates, allowing us to match existing benchmarks at aggregate geographical levels.

To fit the ensembles, we train Level 1 models on a random 80% of the SCF data (N =
42,748), and the Level 2 regression model on a validation set consisting of 10% (N = 5,341). We
then evaluate performance on a test set consisting of the remaining 10% of data (N = 5,341).
For Level 1 models which have hyperparameters to select (i.e. EN, RF, GB, NN, SVM and
KNN), in each fold we employ 5-fold cross-validation with random grid search (length of 10).
For binary classification models – those modelling whether household has positive wealth or
none/negative wealth – we up-sample the negative class within each cross-validation fold such
that there a balanced number of cases. That is, we sample with replacement from the subset
of observations with negative/no wealth to ensure a 50/50 split. Figure 2 depicts the stacked
ensemble structure.

Variable selection and transformations

To build the ensembles, we select the set of variables that are available in both SCF and the
Decennial Census/ACS. The complete set of variables (the ’full model’) is available from 2008
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Figure 2: Structure of stack ensemble

onwards in the ACS and from 1989 onwards in SCF. Table 1 describes these inputs, listing
variable names from the ACS, as well as corresponding variables in the SCF.

Certain potentially relevant variables are not available in some early years of the Decennial.
Therefore, to match Census data availability, beyond years in which the full model is estimable,
we leverage the available data and build unique ensembles. Table 2 provides a breakdown of
the availability over the study period of each of the relevant variables.

Before splitting the data between training, validation and test samples, we transform some
variables in the SCF dataset. In particular, we use the inverse hyperbolic sine transformation for
continuous variables, which have a pronounced right-skew and contain zeroes. This issue mainly
applies to the home value and income variables. We also harmonize several of our categorical
variables by aggregating values into a coarser set of common categories. We do not remove any
observations that might in other circumstances be considered outliers; such extreme values are
potentially important observations for our exercise, indicating the presence of very wealthy or
high-earning households.

Variable importance

Although machine learning approaches to prediction tend to perform better than simple linear
regression, weak explainability can be a limitation in these models. To better understand the
relative importance of each variable, we compute Shapley values for each test set observation,
a well-known approach to model interpretability that originated from research in game theory.
(Lundberg and Lee, 2017) Shapley values provide a local interpretation gauging the relative
importance of each variable for each specific prediction. We can then take the mean absolute
Shapley value per variable to make global assessments of importance. Figure 3 presents these
results separately for the dominant model (random forest) for each component of the ensemble
combination – the binary, positive wealth, and negative wealth ensembles.

Figure 3 rank orders the importance of each input variable across our three models. Home
values (VALUEH) are the most important variable for the binary and positive wealth ensembles
followed by investment income (INCINVST). However, the variables of important to the negative
wealth ensemble look quite different. Specifically, the year of observation in the census is single
most important predictor, followed by vehicle availability (NVEHIC) and again home values
(VALUEH). The relationship between year of observation and negative wealth is a reflection of
the rising levels of personal debt over recent decades.

Because Shapley values give us local (i.e. prediction-by-prediction) information on explana-
tory power, we can also investigate how characteristics may contribute differently to wealth and
debt depending on a household’s net worth. We examine the mean absolute Shapley values for
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Category Variable Variable Description
(Decennial/ACS) (SCF)

Housing information
VALUEH houses Value of primary residence
OWNERSHP houses, hdebt Housing tenure – own outright, own with a mortgage, or rent
MORTAMT1 paymort1 Monthly payment for 1st residential mortgage
MORTAMT2 paymort2 Monthly payment for 2nd residential mortgage
TAXINCL x810 Whether tax is included as part of mortgage payment
INSINCL x810 Whether insurance is included as part of mortgage payment
PROPTX99 x721 Annual property tax amount
RENT rent Usual monthly rent

Detailed income information
INCWAGE x5702 Wage and salary income
INCBUS x5704 Business income
INCSS x5722 Social security income
INCWELFR x5716, x5720, x5724, x5725 Income from welfare receipts
INCINVST x5706, x5708, x5710, x5714 Investment, interest and dividend income
INCRETIR x5724, x5725 Retirement income, e.g. IRA and 401k
INCOTHER x5712, x5718 Other income not included in available categories

Demographic information
AGE age Age
RACE x6809 Race
EDUC x5901, x5902, x5904, x5905 Educational attainment
SEX hhsex Sex
MARST x8023 Marital Status
FAMSIZE x101 Number of own family members in household
YEAR Year

Employment information
OCC x7401, x7411 Occupation
IND x7402, x7412 Industry
EMPSTAT x4100, x4700 Employment status
CLASSWKR x4106, x4706 Class of worker
UHRSWORK x4110, x4710 Usual hours worked per week
WKSWORK2 x4111, x4711 Weeks worked last year, intervalled

Other information
VEHICLES nvehic Number of vehicles available
HCOVANY x6341 Any health insurance coverage

Note: Detailed definitions of variables available at usa.ipums.org/usa-action/variables/group. Codebook for SCF (2019)

found at www.federalreserve.gov/econres/files/codebk2019.txt

Table 1: Census and SCF variables and definitions by category

high and low net-worth households separately, which we define as those with $10mn or more
and between $0 and $25k respectively – see Figure 4. When comparing these two groups we see
that the most important variables differ depending on whether a household has high or low net
worth: investment income is of greater consequence at high net worth and home values matter
more at lower wealth levels. This is in accordance with a study by Saez and Zucman (2016),
that finds that increases in investment income are primarily responsible for increases in top
wealth shares. We also see that rent is an important predictor for only the low net-worth house-
holds, whereas income derived from other sources is an important predictor for high net-worth
households.

Step 2: Impute wealth using Census population survey data

Armed with trained stack ensembles, we then impute wealth for each household observed in the
census microdata for the years from 1960 to 2020. As noted above, we train different ensembles
to impute wealth depending on the year of the census (to account for whether housing variables,
or income sub-components are included). We first filter the Census/ACS data as follows: we
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Variable (Decennial/ACS) 2020 2010 2000 1990 1980 1970 1960 1950 1940

VALUEH X X X X X X X X
OWNERSHP X X X X X X X X
MORTAMT1 X X X X
MORTAMT2 X X X X
TAXINCL X X X X X
INSINCL X X X X X
PROPTX99 X X X X
RENT X X X X X X X X
INCWAGE X X X X X X X X X
INCBUS X X X X X X X X
INCSS X X X X X X
INCWELFR X X X X X X
INCINVST X X X X X
INCRETIR X X X X
INCOTHER X X X X X X X X
AGE X X X X X X X X X
RACE X X X X X X X X X
EDUC X X X X X X X X X
SEX X X X X X X X X X
MARST X X X X X X X X X
OCC X X X X X X X X X
IND X X X X X X X X X
EMPSTAT X X X X X X X X X
CLASSWKR X X X X X X X X X
UHRSWORK X X X X X
WKSWORK2 X X X X X X X X X
VEHICLE X X X X
HCOVANY X X
Note: Detailed definitions of variables in the Decennial and American Community Survey available at

usa.ipums.org/usa-action/variables/group.

Table 2: Census variables and availability by year

remove group quarters and institutionalized individuals. To match SCF, we take the household
head to compute demographic information. We then adjust all income and housing values to
account for inflation, bringing these to 2019 dollars (to match the inflation-adjusted SCF).

We also adjust top and bottom-coded values in the census, given the importance of cen-
soring for inequality estimates (Burkhauser et al., 2011; Fichtenbaum and Shahidi, 1988). For
each variable that is censored, we compute a new maximum or minimum value by multiplying
given top and bottom-codes by 25. We then adjust top and bottom-coded observations by
sampling from a truncated Pareto distribution with values between the top (bottom) code and
new maximum (minimum).2 Pareto distribution parameters are estimated using distributional
information from the SCF (which is not censored). As expected, adjusting top and bottom-
codes has a large effect on our wealth predictions and inequality estimates – see Figure 5 for
the estimates of the Gini coefficient by State pre- and post-adjustment for the 2020 ACS.

Step 3: Estimate inequality at varying geographies using imputed wealth from
census

Once we have imputed household wealth in the census, we compute inequality estimates at
varying levels of geography. In order to ensure that the population survey microdata reflects
the population, we use Census-provided household weights provided in computing inequality.

We estimate inequality (Gini coefficients, wealth shares), as well as mean and median wealth
per area, at multiple spatial scales: Public Use Microdata Areas (PUMAs), 1990 Commuting

2The Pareto distribution has been shown to reasonably approximate the upper tail of the income distribution.
(Fichtenbaum and Shahidi, 1988)
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Figure 3: Mean absolute Shapley values for ensemble combination.
Note: Displayed are mean absolute Shapley values for household variables with predictive power on household
wealth, with higher Shapley values indicating greater predictive power. Here we include Shapley values for sepa-
rate predictions of the binary ensemble (whether positive or negative wealth); and individual models predicting
levels of positive or negative wealth.

Zones (CZs), Metropolitan Areas, States, Regions, and the country as a whole. PUMAs are
available for the 1960 census and from 1990 onwards. We use the crosswalks provided by Dorn
(2009) to infer a households’ CZ of residence based on their reported PUMA (or state economic
areas and county groups for the years 1950, 1970, and 1980). This requires multiplying the
household weights by a factor which represents the probability of belonging to a given CZ
(which is 1 where PUMAs or county groups lie entirely within a CZ, and less than 1 when split
across multiple CZs). Table 5 provides details of data availability at different spatial scales.

Given the imputation procedures used to estimate local wealth levels and distributions,
it is appealing to capture the uncertainty around these estimates. To do so, we bootstrap a
distribution of 100 inequality estimates, sampling with replacement from the distribution of
imputed household wealth, using a 5% confidence level. A main advantage to this simulated
approach is that it does not require any assumptions regarding the normality of the distribution
of inequality estimates (Efron, 1992).

Comparisons of the resulting dataset against published wealth data for the United States
are reported in the Technical Validation section.
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Figure 4: Mean absolute Shapley values for high- and low-income households
Note: Displayed are mean absolute Shapley values for household variables generated from the positive wealth
ensemble on sub-samples of the test data. Higher values indicate greater variable importance. The figure compares
variable importance for households with income between 0 and $25,000, and at and over $10 million.

Technical Validation

In this section, we present the exercises and analyses undertaken to validate the technical quality
of the dataset. Three kinds of validation are reported. First, we describe the performance
analysis on the SCF test sample used to arrive at our final model of wealth. Second, we
conduct out-of-sample validation to verify that our model performs well in predicting household
wealth using data beyond the SCF. Third, we report on exercises that compare our imputed
estimates of aggregate wealth and wealth inequality against other published estimates.

Performance evaluation, SCF test sample

In order to select our final model of household wealth, we run a ’horse race’ to evaluate competing
approaches. The winner is the approach which dominates in terms of predictive performance
on the SCF hold-out sample – the 10% test sample not used for fitting any model.

As reported in Step 1 of the Methods section, we fit a variety of well-known models and
architectures, also exploring combinations of these in a stacked ensemble. We also consider
the implications of different transformations of the outcome measure. Specifically, we explore
outcomes as follows:

- ‘ENS’: binary model predicting whether a household has positive wealth; a model that pre-
dicts positive wealth; a model that predicts negative wealth; and a binary model whether

9



Figure 5: Inequality estimates before and after topcode and bottomcode adjustments, 2020
Note: Displayed is the impact on the estimated Gini Coefficients when adjusting top and bottom-coded household
variables in the Census/ACS. The right-hand axis for the figure provides the difference in the Gini Coefficient
between adjusted and unadjusted estimates.

a household has zero or some negative value of net wealth

- ‘IHS’: the inverse hyperbolic sine transformation of net wealth

- ‘WD’: the net difference of separate models predicting gross wealth and debt

We test these alternative approaches in order to arrive at a final predicted net wealth value that
adequately captures the proportion of households with zero or negative net wealth, while also
accurately predicting quantitative values of net wealth.

To compare these permutations, we employ a number of performance metrics, shown in
Table 3 for the full model. First, we evaluate the ability of each approach to discriminate
between binary classes, that is, households that have some positive value of net wealth versus
those that do not, and households that have zero wealth versus those that have negative net
wealth. For this discriminant ability, we focus on three key measures: the Brier score, the
Kappa statistic, and the Area Under the Receiver Operating Characteristic Curve (AUC). For
illustrative purposes, we also report overall accuracy, which reports the proportion of correct
cases; the true positive rate (TPR) that captures the proportion of households with some
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Model Brier Kappa AUC Accuracy TPR TNR RMSE (+) RMSE (-)

ENS 0.058 0.426 0.901-0.921 0.887 0.910 0.637 0.999 1.480
IHS 0.282 0.000 0.639-0.686 0.916 1.000 0.000 12.953 15.200
WD 0.078 0.000 0.538-0.566 0.916 1.000 0.000 1.351 19.239
GLM 0.146 0.394 0.884-0.907 0.877 0.900 0.623 1.273 1.475
EN 0.146 0.392 0.883-0.906 0.901 0.939 0.480 1.320 1.457
RF 0.064 0.396 0.887-0.909 0.879 0.903 0.617 1.030 1.457
XGB 0.129 0.420 0.901-0.921 0.887 0.910 0.626 1.003 1.458
NET 0.148 0.384 0.882-0.905 0.863 0.880 0.677 1.064 1.744
SVM 0.145 0.361 0.864-0.89 0.875 0.904 0.558 1.309 1.490
KNN 0.209 0.316 0.84-0.871 0.814 0.821 0.740 1.894 1.505

Note: ENS is the full 4-component ensemble model; IHS is the model predicting the inverse hyperbolic sine
transformation of net wealth; WD is the model predicting the net difference between estimates of gross wealth
and debt; GLM is the generalized linear model (logistic transformation for binary model); EN is the elastic net
model; RF is the random forest; XGB is the gradient boosted trees model; NET is the artifical neural network;

SVM is the support vector machine; and KNN is the K nearest neighbors model.

Table 3: Comparison of performance across models for the full model (i.e. 2010-2020 variables).

positive net wealth that are predicted to have positive net wealth; and the true negative rate
(TNR), which describes the proportion of households with some negative net wealth that are
predicted to have negative net wealth. While the accuracy measure is typically used to measure
performance, in situations where there is a large imbalance between classes – such as our own
– it can be misleading. Specifically, the result can be high levels of accuracy while the minority
class is not well predicted. The TPR and TNR can reveal whether there is an imbalance
in accuracy across the different classes. The Kappa statistic overcomes the insensitivity to
imbalance, comparing the observed accuracy versus the expected accuracy that would result
from random change. AUC provides the probability of correctly discriminating between classes
for a randomly selected observation, and is therefore also sensitive to imbalance. The Brier
score – which is simply the difference between predicted probability minus the actual outcome
(1 or 0) squared – is threshold-agnostic, and therefore provides an indication of the quality of
a model’s predictions. For continuous predictions, we focus on the root mean squared error
statistic (RMSE).

We find that the stacked ensemble (ENS) tends to outperform all other approaches. In
particular, ENS has the lowest Brier score and the highest Kappa (at the optimal decision
threshold). The benefits of the ensemble are evident when looking at the performance of the
RF and XGB models, which are the top performing level one models on the Brier score and
Kappa statistic respectively. The binary ensemble is able to encompass the relative benefits of
both these approaches while overcoming the deficiencies of each (i.e. the poor Brier score for
XGB, and relatively low Kappa for RF). We are also able to see why the ensemble combination
is superior to a single ensemble where net wealth is transformed using the inverse hyperbolic
sine (IHS), or when gross wealth and debts are modeled separately (WD). In these cases, overall
accuracy is high but the approaches are completely insensitive to zero or negative wealth values,
each completely missing true negative cases (i.e. TNR = 0%). Note that an ensemble which
models the raw, untransformed value of net wealth performs similarly to when the inverse
hyperbolic sine is taken. The same pattern holds for the positive wealth models – ENS has the
lowest RMSE for positive wealth. The negative wealth ensemble model performs slightly worse
than some of the level one learners.

To visually inspect predicted versus actual values, Figure 6 shows the performance of the
full ensemble models separately for households with positive and negative wealth in the held-
out SCF data (i.e. 10% of data). The figures show the predicted versus actual net wealth
for households with a line of symmetry as the diagonal. There is an evident strong fit for
households with positive wealth (91% of the sample; RMSE = 0.99– the stacked ensemble
errors are symmetrical and highly accurate at the household-level. The fit is clearly less good
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Figure 6: Test sample performance (SCF), positive and negative wealth stacked ensembles
Note: Separately for households with positive and negative wealth in the SCF test-sample data (N=5,341), this
figure describes the correlation between actual and predicted values of net wealth. Root mean squared error
(RMSE) for positive wealth estimate equal to 0.99. RMSE for negative wealth estimates is 1.48.

for those households with negative wealth (7.5% of sample; RMSE = 1.48) due to a relative
lack of information which can be used to quantify negative wealth – e.g. income items provide
relatively less information as to the quantum of negative wealth.

Predictive performance unsurprisingly degrades for models which are missing some key
items, in particular housing tenure and value (missing from the 1950 census), and as income
items become less detailed and coarser (for example, from 1940 to 1970, rather than being sepa-
rately identified, investment income is incorporated into ’other’ income). The relative decline is,
however, quite small in size, even for the 1950 sample. See Table 4 for year-specific performance
results for the ‘winning’ ensemble approach.

Performance evaluation, out of sample dataset (PSID)

To further validate the performance of the ensemble models, we next examine the fit on a
completely separate dataset – the 2019 wave of the Panel Study of Income Dynamics (PSID).
The PSID provides an identical set of variables to those used to build the models that are
trained from the SCF. There is one important difference, however – the PSID definition of net
wealth excludes the value of pensions while SCF includes it (Cooper et al., 2019). Figure 7
shows performance separately for households with positive and negative wealth. We see similar
patterns as with the test sample – the performance is relatively stronger for positive wealth.
There are higher absolute error levels for both, (RMSE = 1.26 and RMSE = 1.77 respectively)
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Year Brier Kappa AUC Accuracy TPR TNR RMSE (+) RMSE (-)

2010-2020 0.058 0.426 0.901-0.921 0.887 0.910 0.637 0.999 1.480
1990-2000 0.058 0.408 0.891-0.913 0.894 0.925 0.554 1.002 1.497
1980 0.063 0.379 0.878-0.901 0.861 0.881 0.653 1.058 1.432
1970 0.063 0.389 0.877-0.9 0.860 0.876 0.685 1.151 1.445
1960 0.063 0.384 0.873-0.897 0.859 0.876 0.679 1.206 1.438
1950 0.066 0.335 0.84-0.87 0.853 0.878 0.588 1.581 1.462
1940 0.063 0.386 0.873-0.897 0.881 0.912 0.560 1.313 1.440
Note: Using performance metrics described in the text, this table compares performance of the ensemble
combinations across different years, corresponding to different variable sets available in the Census/ACS.

Table 4: Performance of ensemble combination by year.

due to the clear overestimation of net wealth relative to the test model, and to be expected
given PSID excludes pension wealth in its definition of net wealth.

Since PSID includes State identifiers, we can also assess the role of location in generating
prediction errors. For each ensemble, we run a simple regression model in which a State identifier
is the regressor and error as regressand. For binomial ensemble models, the regressand indicates
either correct or inaccurate prediction; for ensembles predicting levels of positive or negative
wealth, the dependent variable captures the residuals. In each of these regression estimates,
the State predictor has negligible value in explaining the variation in errors, with Pseudo- and
Adjusted-R-squared of less than 1%. Since neither the PSID nor any other known publicly-
available data on wealth offers geographic identifiers below the level of an individual state,
we are unable to assess our estimates of inequality at finer spatial scales. One of the main
contributions of the GEOWEALTH database will be in enabling research into wealth dynamics
at these finer spatial scales.

Validation against aggregate published measures of wealth inequality

As a further validation exercise, we compare aggregates of our imputed Census wealth data
against widely-recognized published data. Available data enables such comparisons to national-
and state-level indicators.

The top panel of Figure 8 compares two estimates of changes in national wealth inequality.
The solid line, labelled ‘Ensemble’ presents a series of Gini coefficients generated from our
imputed Decennial and ACS wealth data. The dashed line is a series of national-level Gini
coefficients estimated using distributional macroeconomic accounts, obtained from Saez and
Zucman (2020). Note that, while our base units are households, Saez and Zucman (2016,
2020) use, respectively tax-units, based on capitalizing income reported to the tax authorities,
and individuals. The dotted line presents estimates from Kuhn et al. (2020), which uses a
harmonized version of the SCF. The bottom panel compares our estimates of the top 1% share
of total wealth, the top 10% share, and the bottom 50% share with those provided by Saez and
Zucman (2016, 2020).

Our national estimates and those of both Saez and Zucman and Kuhn et al, while differing
slightly in levels, broadly agree in terms of trends. This provides support for the idea that
our estimates derived from imputing household wealth in the census is picking up important
aggregate level dynamics. There are some differences to highlight. The declines in inequality
in the Gini and top 1% share from 1960 to 1980 that we estimate lie somewhere between those
described in Saez and Zucman (2020) and Kuhn et al. (2020). Meanwhile, though Kuhn et al
suggest that Gini coefficients capturing wealth inequality have grown between 2010 and 2016,
both Saez and Zucman (2020) and our ensemble estimates indicate a moderate decline in overall
national wealth inequality over the last decade. Differences between our ensemble estimates and
those of Saez and Zucman (2020) appear to be driven wealth at and above the top one percent.
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Figure 7: Out of sample performance (PSID), positive and negative wealth stacked ensembles
Note: Separately for households with positive and negative wealth in 2019 Panel Study of Income Dynamics
(PSID) data, this figure describes the correlation between actual net wealth and predicted values using our
ensemble model. Root mean squared error (RMSE) for positive wealth estimate equal to 1.26. RMSE for
negative wealth estimates is 1.77.

For recent years, the U.S. Census Bureau’s Survey of Income and Program Participation
(SIPP) – a nationally representative survey tracking household economic outcomes and govern-
ment program participation – provides estimates of mean and median wealth at the state-level.
We are thus able to correlate our imputed state-level estimates with those provided by SIPP.

The scatterplots in Figure 9 describe the relationship between SIPP state-level measures of
mean and median wealth and our Census imputations in 2020. These measures are strongly
correlated at both the mean (r = 0.86) and the median (r = 0.88). This high level of correspon-
dence provides further strong validation for our imputed estimates, this time at a subnational
scale.

Descriptive analysis

Having described the process to build the GEOWEALTH database and our external validation
procedures, we conclude by presenting some key patterns in the dataset that can inform future
research. We do so by focusing on two separate indicators of wealth inequality, one that captures
wealth concentration within commuting zones and one that measures wealth differences between
commuting zones.

To examine how commuting zones have been changing with respect to their wealth levels
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Figure 8: US wealth inequality, comparison of estimates
Note: The top panel compares estimates of national wealth inequality generated using our ensemble model to
those that emerge from the distriburtional national accounts method in Saez and Zucman (Saez and Zucman,
2020), as well as the harmonized version of the SCF generated by Kuhn et al (Kuhn et al., 2020), a series that
ends in 2016.

over the past 60 years, Figure 10 maps average wealth in 1960 and 2020. Given the large
increases in average wealth over the study period, we standardize average wealth into period-
specific z-scores, which have a mean of zero and a standard deviation of one. This metric
provides a relative sense of the deviation of wealthier and poorer commuting zones from the
average commuting zone in each period.

In 1960, commuting zones in traditional industrial regions of country exhibit the highest
average levels of wealth. High wealth level are evident across the Northeast, the greater Chicago
region, and in the Sunbelt in Southern California and Florida. These patterns closely track well
known patterns of early- to mid-twentieth century industrialization and urbanization (Lindert
and Williamson, 2017).

While patterns of average wealth in 2020 bear some resemblance to those in 1960, several
important differences are evident. Specifically, the advantages of many once wealthy manufac-
turing regions have regressed toward the mean. This is particularly notable for the metropolitan
areas around the Great Lakes such as Buffalo, Cleveland, Chicago, and Milwaukee. In their
place, Pacific cities such as Seattle, Los Angeles, San Francisco, interior regions like Denver,
and the major Texan metropolises have decidedly improved their relative wealth positions. Al-
though the South as a whole continues to lag the rest of the country in terms of average wealth,
Savannah (GA), Raleigh (NC), and Nashville (TN) are examples of Southern commuting zones
that have seen substantial growth in average wealth levels.
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Figure 9: US state-level comparisons, mean and median wealth from imputed estimates and
SIPP (2020)
Note: Panels compare state-level mean and median wealth, using estimates generated from our ensemble model
and those obtained from the 2020 Survey of Income and Program Participation (SIPP).

As noted above, the changing geography of wealth over this period is also characterized by
an intensification of inequality between regions. This is evident in Figure 11, where we plot
the trajectories of relative wealth for commuting zones across each decade. Most clearly, this
figure exhibits a pattern of fanning out, implying rising levels of inter-regional wealth inequality
since 1960. This means that the average wealth gaps between the wealthiest commuting zones
and the average commuting zone are significantly larger in 2020 than they were in 1960. For
example, Boston and Chicago, which were among the top five wealthiest commuting zones in
1960, had average wealth levels that were approximately 3 to 4 standard deviations above the
average. In 2020, however, the average wealth levels of San Jose and San Francisco - the two
wealthiest commuting zones today - are 5 to 6 standard deviations above the mean. Preliminary
investigation of the GEOWEALTH database therefore reveals that the wealthiest regions have
been pulling away from the rest of the country since 1960.

Finally, we turn our attention to the changing dynamics of wealth inequality within regions
over time. Figure 12 maps the Gini coefficients for wealth inequality within commuting zones
in 1960 and 2020, revealing patterns of change and stability. In 1960, intra-regional wealth was
high throughout the South, low in the Midwest and Northern Plains regions, and more mixed
along the coasts. The main change to this pattern up to 2020 has, however, been the dramatic
rise in inequality in the Midwest and Plains regions. While the South persists as a region that
broadly exhibits high inequality, central and formerly manufacturing-dependent Midwestern
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Mean wealth, 1960
(Z-scores)

-1.92 - -0.50
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Mean wealth, 2020
(Z-scores)

-1.28 - -0.50
-0.49 - 0.50
0.51 - 2.00
2.01 - 6.47

Inequality between regions, 1960 & 2020

Figure 10: Average wealth levels across commuting zones, 1960 & 2020
Note: For 1990-vintage commuting zones (CZs) as in Tolbert and Sizer (Tolbert and Sizer, 1996), this figure
maps mean wealth levels in 1960 and 2020. Local average wealth levels are converted to z-scores such that the

distribution has a mean of zero and a standard deviation equal to one.

regions have seen a substantial worsening of inequality over this period. This convergence in
terms of inequality levels between the South and the Midwest is consistent with findings from
for other studies of inequality such as intergenerational mobility and earnings levels (Kemeny
and Storper, 2022; Connor and Storper, 2020a).

We thus present the GEOWEALTH database as a new source of information that can
considerably expand the frontier of research into long-term inequality and economic prosper-
ity. Over recent years, our ability to study long-term patterns of spatial inequality have been
greatly enhanced through other related efforts. Recent efforts have focused on generating related
databases that track leading indicators of inequality such as urbanization, patenting, incomes,
and intergenerational mobility within consistent spatial units over long periods of time (Connor
and Storper, 2020a; Leyk et al., 2020; Uhl et al., 2023, 2021; Petralia et al., 2016). In the same
vein, the GEOWEALTH database provides a first important step toward understanding the
long-term spatial dynamics of wealth inequality.

Usage Notes

Subnational-scale GEOWEALTH data are available on an open access basis through a Creative
Commons Attribution 4.0 International (CC BY 4.0) license. The data are hosted by the Inter-
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Figure 11: Relative wealth over time, U.S. Commuting Zones
Note: Each line in this figure represents a particular U.S. Commuting Zone (CZ), defined according to 1990
boundaries as per (Tolbert and Sizer, 1996). In each observed year, the Y -axis measures the ratio of average

wealth for a CZ to the all-locations average wealth.

university Consortium for Political and Social Research (ICPSR) at Project #192306. Any
use of this 1960–2020 compilation of data should be accompanied by a citation of this paper,
in addition to a proper use of DOI-reference (doi.org/10.3886/E192306V1) and citation of the
actual data.

Data are organized into a series of individual comma-separated files (csv), with each file
corresponding to a particular spatial unit of observation: state; 1990-vintage commuting zone;
metropolitan area; PUMA; and division. Coverage over time is dependent on spatial units, per
Table 5. The data at ICPSR include a brief metadata file in pdf format.

Primary variables included in each dataset include locational identifiers (codes and names
of places); the number of Census households surveyed in that location; measures of central
tendency (means and medians) for wealth; measures of spread for wealth (standard deviation);
ratios of wealth at specific percentiles (for instance the ratio of wealth at the 90th/50th per-
centiles); as well as selectec key demographic features of locations, derived from the Census.
For wealth estimates, we also include upper and lower bounds, based on the bootstrapping
procedure described in the text.

We view this dataset as a necessary first step towards the study of spatial wealth disparities.
While one would ideally want directly observed, geocoded data on household wealth in the
United States and how it has changed, such data are unlikely to become available in the near
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Gini wealth, 1960
0.62 - 0.73
0.74 - 0.77
0.78 - 0.82
0.83 - 0.90

Gini wealth, 2020
0.59 - 0.73
0.74 - 0.77
0.78 - 0.82
0.83 - 0.93

Inequality within regions, 1960 & 2020

Figure 12: Gini coefficients for wealth distribution within commuting zones, 1960 & 2020
Note: For 1990-vintage commuting zones (CZs) as in Tolbert and Sizer (Tolbert and Sizer, 1996), this figure

maps Gini coefficients tracking within-CZ wealth inequality in 1960 and 2020.

future. These data could be used as a foundation to explore a wide range of questions related
to the causes and consequences of geographic variation in wealth and wealth inequality, which
heretofore have been impossible to explore. Just as there is a growing literature on community
and spatial effects of differences in income and poverty, these data provide a basis to explore
related questions around wealth.

Potential users of these data should be aware of limits on coverage of the extremely wealthy.
One longstanding strand of research (i.e., Piketty and Saez, 2006; Atkinson and Piketty, 2007)
uses administrative data to explore the evolution of top incomes – commonly focusing on in-
dividuals at or above the top 1 or 0.1 percentile. While the SCF offers improved coverage of
middle class assets like housing that do not generate flows of taxable income (Kuhn et al., 2020),
only more recent SCF permit more careful modeling of top incomes (Bricker et al., 2016), and
even then there may be limits on analysts’ ability to explore very top incomes using our data.
Indeed, when we look at temporal trends in the share of wealth accruing to the top 0.1% and
top 0.01% of wealth holders, we do not see the same large increase in recent decades as is evident
in other data, such as (Saez and Zucman, 2020, 2016), although our estimates of the top 0.1%
are close to that provided by the Fed using distributional financial accounts (DFA).3 For these

3Federal Reserve Board data on wealth shares using DFA is available here:
https://www.federalreserve.gov/releases/z1/dataviz/dfa/distribute/table/.
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Dataset Name Spatial Units Unique Units Observations Years

puma wealth inequality.csv Public-use micro areas 7428 8641 1960–2020
cz wealth inequality.csv Commuting Zones 741 5174 1960–2020
metarea wealth inequality.csv Metropolitan areas 564 1226 1960–2020
state wealth inequality.csv States 51 353 1960–2020
division wealth inequality.csv Divisions 9 70 1960–2020

Table 5: Datasets and coverage

comparisons, see Figures 13 and 14.

Figure 13: Comparison of national-level estimates of the wealth share of the top 0.1%
Note: For measures of the share of total national wealth held by the top 0.1% of the distribution, this figure
compares estimates generated using the modeling techniques described in this paper (‘Ensemble’) to existing data,
specifically the Federal Reserve’s Distributional Financial Accounts, as well as Saez & Zucman (2016) (Saez and
Zucman, 2016).

Code availability

All replication code is available at github.com/jhsuss/wealth-inequality.
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Figure 14: Comparison of national-level estimates of the wealth share of the top 0.01%
Note: For measures of the share of total national wealth held by the top 0.01% of the distribution, this figure
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data, specifically Saez & Zucman (2016) (Saez and Zucman, 2016).
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