Submitted to Bernoulli

On Consistency and Sparsity for
High-Dimensional Functional Time Series
with Application to Autoregressions

SHAOJUN GUO! and XINGHAO QIAO?

! Institute of Statistics and Big Data, Renmin University of China, Beijing, 100872, P.R.
China. E-mail: sjguo@ruc.edu.cn

2 Department of Statistics, London School of Economics, London, WC2A 2AE, U.K.
E-mail: x.qiao@lse.ac.uk

Modelling a large collection of functional time series arises in a broad spectral of real applica-
tions. Under such a scenario, not only the number of functional variables can be diverging with,
or even larger than the number of temporally dependent functional observations, but each func-
tion itself is an infinite-dimensional object, posing a challenging task. In this paper, we propose
a three-step procedure to estimate high-dimensional functional time series models. To provide
theoretical guarantees for the three-step procedure, we focus on multivariate stationary pro-
cesses and propose a novel functional stability measure based on their spectral properties. Such
stability measure facilitates the development of some useful concentration bounds on sample
(auto)covariance functions, which serve as a fundamental tool for further convergence analysis
in high-dimensional settings. As functional principal component analysis (FPCA) is one of the
key dimension reduction techniques in the first step, we also investigate the non-asymptotic prop-
erties of the relevant estimated terms under a FPCA framework. To illustrate with an important
application, we consider vector functional autoregressive models and develop a regularization
approach to estimate autoregressive coefficient functions under the sparsity constraint. Using
our derived non-asymptotic results, we investigate convergence properties of the regularized es-
timate under high-dimensional scaling. Finally, the finite-sample performance of the proposed
method is examined through both simulations and a public financial dataset.

Keywords: functional principal component analysis, functional stability measure, high-dimensional
functional time series, non-asymptotics, sparsity, vector functional autoregression.

1. Introduction

In functional data analysis, it is commonly assumed that each measured function, treated
as the unit of observation, is independently sampled from some realization of an under-
lying stochastic process. Functional time series, on the other hand, refers to a collection
of curves observed consecutively over time, where the temporal dependence across ob-
servations exhibits. The literature has mainly focused on univariate or bivariate func-
tional time series, see, e.g., Hormann and Kokoszka (2010); Cho et al. (2013); Panaretos
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and Tavakoli (2013); Hormann, Kidzinski and Hallin (2015); Jirak (2016); Li, Robin-
son and Shang (2020) and the reference therein. Recent advances in technology have
made multivariate or even high-dimensional functional time series datasets become in-
creasingly common in many applications. Examples include cumulative intraday re-
turn trajectories (Horvath, Kokoszka and Rice, 2014) and functional volatility pro-
cesses (Miiller, Sen and Stadtmiiller, 2011) for a large number of stocks, daily concen-
tration curves of particulate matter and gaseous pollutants at different locations (Li
et al., 2017), and intraday energy consumption curves for thousands of London house-
holds (available at https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-
london-households). These applications require understanding relationships among a rel-
atively large collection of functional variables based on temporally dependent functional
observations.

Throughout the paper, suppose we observe p-dimensional vector of functional time
series, X;(-) = (th(-), . ,ti(~))T for t = 1,...,n, defined on a compact interval Uf.
Addressing multivariate or even high-dimensional functional time series problems poses
challenges and is largely untouched in the literature. Under such a scenario, not only
p is large relative to n, but each Xy;(-) is an infinite-dimensional object with temporal
dependence across observations. A standard procedure towards the estimation of models
involving high-dimensional functional data consists of three steps. In the first step, due
to the infinite-dimensional nature of functional data, some form of dimension reduction,
e.g. data-driven basis expansion via functional principal component analysis (FPCA) or
its dynamic version (Hormann, Kidziriski and Hallin, 2015) and pre-fixed basis expan-
sion (Fan, James and Radchenko, 2015), is needed to approximate each Xy;(-) by the
gj-dimensional truncation, which transforms the problem of modelling a p-dimensional
vector of functional time series into that of modelling (Z§=1 ¢;)-dimensional vector time
series. The second step involves the estimation under a high-dimensional and dependent
setting, where some lower-dimensional structure is commonly imposed on the model
parameter space. One large class assumes sparse function-valued parameters involved
in high-dimensional functional time series models. Under functional sparsity constraints,
the first step results in the estimation of block sparse vector- or matrix-valued parameters
in the second step, where different regularized estimation procedures can be developed in
a blockwise fashion, see, e.g., under an independent setting, Fan, James and Radchenko
(2015); Kong et al. (2016) and Qiao, Guo and James (2019). Finally, for interpretation
and prediction, the third step recovers functional sparse estimates from those block sparse
estimates obtained in the second step.

The essential challenge to support such three-step estimation procedure is to pro-
vide theoretical guarantees in a range of high-dimensional settings, e.g., logp/n — 0.
Within such high-dimensional statistics framework, one main goal is to obtain some non-
asymptotic results, i.e. error bounds on a given performance metric that hold with high
probability for a finite sample size n and provide explicit control on the dimension p
as well as other structural parameters. Compared with non-functional data, the intrin-
sic infinite-dimensionality of each process Xy;(-) leads to a significant rise in theoretical
complexity of the problem, since one needs to develop some operator- and FPCA-based
non-asymptotic results for dependent processes within an abstract Hilbert space and to
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propose a dependence measure to capture the effect of temporal dependence on non-
asymptotic properties. The existing theoretical work mainly for the first step has focused
on studying its asymptotic properties by treating p as fixed under a moment-based de-
pendence structure (Hormann and Kokoszka, 2010) or its non-asymptotic properties
under either an independent setting (Koltchinskii and Lounici, 2017; Qiao et al., 2020;
Araya Valdivia, 2020) or a special autoregressive structure (Bosq, 2000). These results,
however, are not sufficient to evaluate the performance of the three-step procedure in a
high-dimensional regime with a general dependence structure. Such a challenging task
motivates us to develop some essential non-asymptotic results under the setting we con-
sider, which fills the gap between practical implementation and theoretical justification
and forms the core of our paper.

A key innovation in our paper is to propose a functional stability measure for a
large class of stationary Gaussian processes, {X:(-)}, based on their spectral density
functions. Such stability measure provides new insights into the effect of temporal de-
pendence on theoretical properties of X;’s, the estimators for autocovariance functions
35 (u,v) = Cov{Xy(u),Xiyn(v)} with b = 0,£1,... and (u,v) € U?, and, in particular,
facilitates the development of some novel concentration bounds on f)h serving as a fun-
damental tool for further convergence analysis under high-dimensional scaling. Based on
these concentration bounds, we establish non-asymptotic error bounds on relevant esti-
mated terms under a FPCA framework so as to provide theoretical guarantees for our
proposed three-step procedure. Such concentration results can also lead to convergence
analysis of other possible high-dimensional functional time series models, e.g. those men-
tioned in Section A of the Supplementary Material (Guo and Qiao, 2022). It is worth
noting that the functional stability measure is fundamentally different from the direct
extension of the stability measure (Basu and Michailidis, 2015) to the functional do-
main. This is because, for truly infinite-dimensional functional objects, in contrast to the
functional analog of Basu et al.’s stability measure, which just controls the maximum
eigenvalue for spectral density functions of {X;(-)}, the functional stability measure uti-
lizes the functional Rayleigh quotients of spectral density functions relative to ¥y and
hence can more precisely capture the effect of small decaying eigenvalues. Such functional
stability measure also leads to non-asymptotic results of normalized versions of relevant
estimated terms, making the characterization of relevant tail behaviours more accurate
for small eigenvalues. To the best of our knowledge, we are the first to propose such a
dependence measure for high-dimensional functional time series and rely on it to develop
some essential non-asymptotic results.

To illustrate the proposed three-step approach and the usefulness of the derived non-
asymptotic results with an important application, we consider vector functional au-
toregressive (VFAR) models, which characterize the temporal and cross-sectional inter-
relationships in {X¢(-)}. One advantage of a VFAR model is that it accommodates dy-
namic linear interdependencies in {X;(-)} into a static framework within a Hilbert space.
Moreover, a sparse VFAR model facilitates the extraction of Granger causal networks
(Basu, Shojaie and Michailidis, 2015) under the functional domain. The VFAR estima-
tion is intrinsically a very high-dimensional problem, since, in the second step of our

imsart-bj ver. 2014/10/16 file: FSM_Bernoulli_Final_Main.tex



4 S. Guo and X. Qiao

procedure, we need to fit a vector autoregressive (VAR) model, whose dimensionality,
( ?:1 q;)?, grows quadratically with Zle g;. For example, estimating a VFAR model
of order 1 with p = 20 and ¢; = 5 requires estimating 1002 = 10,000 parameters. Under
high-dimensional scaling and the sparsity assumption on the functional transition matri-
ces, the second step requires to estimate a block sparse VAR model. We then propose the
regularized estimates of block transition matrices, on which the block sparsity constraint
is enforced via a standardized group lasso penalty (Simon and Tibshirani, 2012). Using
the derived non-asymptotic results, we show that the proposed three-step approach can
produce consistent estimates for sparse VFAR models in high dimensions.

Related literature. Our work lies in the intersection of high-dimensional statis-
tics, functional data analysis and time series analysis, each of which corresponds to a
vast literature, hence we will only review the most closely related intersectional work to
ours. (i) For high-dimensional independent functional data, regularization methods have
recently been proposed to estimate different types of functional sparse models, e.g., func-
tional additive regression (Fan, James and Radchenko, 2015; Kong et al., 2016), static
functional graphical models (Li and Solea, 2018; Qiao, Guo and James, 2019) and its
dynamic version (Qiao et al., 2020). (ii) For high-dimensional time series, some essen-
tial concentration bounds were established for Gaussian processes (Basu and Michailidis,
2015), linear processes with more general noise distributions (Sun et al., 2018) and heavy
tailed non-Gaussian processes (Wong, Li and Tewari, 2020). (iii) For examples of re-
cent developments in high-dimensional VAR models, Kock and Callot (2015); Basu and
Michailidis (2015) and Wong, Li and Tewari (2020) studied the theoretical properties of
£1-type regularized estimates. Basu, Shojaie and Michailidis (2015) and Billio, Casarin
and Rossini (2019) considered extracting Granger causal networks from sparse VAR mod-
els. See also Han, Lu and Liu (2015), Guo, Wang and Yao (2016) and Ghosh, Khare and
Michailidis (2019). (iv) For examples of research on functional autoregressive models, see
Bosq (2000); Kokoszka and Reimherr (2013); Aue, Norinho and Hérmann (2015) and the
reference therein.

Outline of the paper. In Section 2, we first introduce a functional stability mea-
sure and rely on it to establish concentration bounds on the quadratic/bilinear forms of
Eh leading to elementwise concentration results for Eh We then establish theoretical
guarantees for the proposed three-step approach by deriving some useful non-asymptotic
error bounds under a FPCA framework. In Section 3, we develop a three-step procedure
to estimate the sparse VFAR model, connect with casual network modelling, present the
convergence analysis of the regularized estimate and finally examine the finite-sample per-
formance through both simulation studies and an analysis of a public financial dataset.

Notation. We summarize here some notation to be used throughout the paper. Let
Z denotes the set of integers. For two positive sequences {a,} and {b,}, we write a,, < b,
or b, 2 a, if there exists an absolute constant ¢, such that a, < cb, for all n. We write
ap = b, if and only if b, < a, and a, < b,. We use z v y = max(z,y). For matrices
A B e RP1*P2we let ((A,B)) = trace(A"B) and denote the Frobenius norm of B by

[IB||r = (Z]k B?k)l/Q. Let Lo(U) denote a Hilbert space of square integrable functions
defined on the compact set U equipped with the inner product (f,g) = §,, f(u)g(u)du
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for f,g € Lo(U) and the induced norm | - | = (-, ->!/2. We denote its p-fold Cartesian
product by H = Lo (U) x - -+ x Lo(U) and the tensor product by S = Lo(U) ® Lo (U). For
f=(fi,...,fp)" and g = (g1,...,9p)" in H, we denote the inner product by {f,g)m =
37-1(fj-9;) and the induced norm by | - s = (. We use [fo = 37, I(1f;] # 0)
to denote the functional version of vector £y norm. For any K € S, it can be viewed
as the kernel function of a linear operator acting on Lo(U), i.e. for each f € La(U), K
maps f(u) to K(f)(u) = §,, K(u,v)f(v)dv. For notational economy, we will use K to
denote both the kernel function and the operator. Moreover, we denote the operator and

Hilbert-Schmidt norms by |K|z = supsj<; [K(f)| and |K|s = (§§ K (u,v)*dudv) 1z

respectively. For A = (Ajk) with its (j, k)-th component A, € S, we define

1<j,k<p
the functional versions of Frobenius, elementwise ¢y, and matrix ¢y norms by |A|rp =

1/2 .
(2,5 145k]3) ) Amax = max g [Ajls and |A ] = max; Y [Ajuls, respectively.

2. Main results

Suppose that {X¢(-)}iez, defined on U, is a sequence of p-dimensional vector of centered
and covariance-stationary Gaussian processes with mean zero and p x p autocovariance

functions, 3, = (E;Z) with its (4, k)-th component Ey,i) € S for h e Z. In

particular when h = 0, one typically refers to O as marginal-covariance functions for
j = k, and cross-covariance functions for j # k. To simplify notation, we will also use 3,
to denote the lag-h autocovariance operator induced from the kernel function Xy, i.e.,
for any given ® € H,

)léj,kgp

S (®)(u) = J a(u,0) @) = ((0f (), @)y (o (w0, <1>(.)>H)T eH,

u

where o’§h> (u,-) = (E;’ll) (u,-),.. .,ES? (u,~))T for 7 = 1,...,p. In the special case of
h = 0, the covariance function 3 is symmetric and non-negative definite, i.e. g (u,v) =

o (v,u)T for any (u,v) € U? and (@, Xo(®))n = 0 for any ® € H.

2.1. Functional stability measure
To introduce the functional stability measure, we first consider the spectral density op-
erator of {X;(:)}ez, defined from the Fourier transform of autocovariance operators

{31 }hez, which encodes the second-order dynamical properties of {X¢(-)}iez-

Definition 1. We define the spectral density operator of {X:(-)}tez at frequency 0 by

1 .
fX,G = % };Zzh eXp(—th), 0e [_77771-]' (1)
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The spectral density operator (or function) generalizes the notion of the spectral den-
sity matrix (Basu and Michailidis, 2015) to the functional domain, and it can also be
viewed as a generalization of the spectral density operator (or function) (Panaretos and
Tavakoli, 2013) to the multivariate setting. Furthermore, if 35" [Z4]z < o0, then fx g
is uniformly bounded and continuous in 6 with respect to | - |z, where we denote by
1Znllz = supje),<1,0em|Xn(®)|n the operator norm of X, and the following inversion

formula holds: .

3y = fx.,0exp(ih0)df, for all h e Z. (2)
—T
The inversion relationships in (1) and (2) indicate that spectral density operators and
autocovariance operators comprise a Fourier transform pair. Hence, to study the second-
order dynamics of {X(-)}tez, we can impose conditions on ¥y and {fx ¢,0 € [—m, 7]}
in the following Conditions 1 and 2, respectively, which together imply that {fx,6 €
[—7, ]} are trace-class operators.

Condition 1. (i) The marginal-covariance functions, Zgj) ’s, are continuous onU? and

uniformly bounded over j € {1,...,p}; (i) Ao = maxi<j<p §;, Z§2)(u,u)du =0(1).

Condition 2. (i) The spectral density operators fx g,0 € [—m, | exist; (i) The func-
tional stability measure of {X()} ez defined as follows, is bounded, i.e.

(®, fx.0(®))
M =21  esssup ~——r——LH <o
(/%) 0e[—m,m],BH? <‘I’,20(‘I’)>H

where Hy = {® € H: (P, %0(®))u € (0,0)}.

3)

In general, we can relax Condition 1(ii) by allowing Ao to grow at some slow rate as p
increases. Then our established non-asymptotic bounds, e.g., those in (17) and (18), will
depend on A\g. We next provide several comments for Condition 2. First, the functional
stability measure is proportional to the essential supremum of the functional Rayleigh
quotient of fx g relative to 3g over 6 € [—m, 7]. In particular, under the non-functional
setting with ® € R? and fx g, X € RP*P, (3) reduces to

9 D7 fx o P
T esSSuUp et ,
oe[—m,w],P#0 {)TZO(}

which is equivalent to the upper bound condition for the stability measure, /W( x),
introduced by Basu and Michailidis (2015), i.e.

~ D" fx 0P
M(fx) = esssup —eri—
( ) oe[—m, 7], P#0 *'P

Second, if X1 (+), ..., Xy (+) are finite-dimensional objects, the upper bound conditions for

M(fx) and the functional analog of M (fx) are equivalent. However, for truly infinite-
dimensional functional objects, M(fx) makes more sense, since it can more precisely
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capture the effect of small eigenvalues of fx ¢’s relative to those of 3. Moreover, Condi-
tion 2 is satisfied by a large class of infinite-dimensional functional data, see examples in
Section B of the Supplementary Material (Guo and Qiao, 2022). Third, it is clear that,
unlike M (fx), M(fx) is a scale-free stability measure. In the special case of no temporal
dependence, M(fx) = 1. Fourth, since the autocovariance function characterizes a mul-
tivariate Gaussian process, it can be used to quantify the temporal and cross-sectional
dependence for this class of models. In particular, the spectral density functions provide
insights into the stability of the process. In our analysis of high-dimensional functional
time series, we will use M(fx) as a stability measure of the process of {X;(-)}ez. Larger
values of M(fx) would correspond to a less stable process.

We next illustrate the superiority of the functional stability measure to possible com-
petitors using VFAR models as an example. See Section 3 for details on VFAR models.
In particular, we consider a VFAR model of order 1, denoted by VFAR(1), as follows

Xi(u) = L{ Au,v)X—1(v)dv + &4(u), uel. (4)

In the special case of a symmetric A, i.e. A(u,v) = A(v,u)”, equation (4) has a stationary
solution if and only if ||A||z < 1. See Theorem 3.5 of Bosq (2000) for p = 1. However, this
restrictive condition is violated by many stable VFAR(1) models with non-symmetric A.
Moreover, it does not generalize beyond VFAR(1) models.

We consider an illustrative example with

_ [ abi(u)i(v)  bibr(u)pa(v) _( zai(u) _ [ eati(u)
A(u,v) = ( 0 ata (u)ta (v) > Xt (u) = ( T2 (1) ) c€¢(u) = ( et2¢2((u))
5

o Lid.

where (e¢1,€e42)" "~ N(0,I) and [¢;] =1 for j = 1,2. Section E of the Supplementary
Material (Guo and Qiao, 2022) provides details to calculate p(A) (spectral radius of
A), ||A]lz and M(fx) for this example. In particular, p(A) = |a] < 1 corresponds to
a stationary solution to equation (4). Figure 1 visualizes ||A||z and M(fx) for various
values of a € (0,1). We observe a few apparent patterns. First, increasing a results in
a value for larger ||A||z. As |b| grows large enough, the condition of ||A||z < 1 will be
violated, but equation (4) still have a stationary solution. Second, processes with stronger
temporal dependence, i.e. with larger values of a or |b|, have larger values of M(fx) and
will be considered less stable. For a high-dimensional VFAR(1) model, it is more sensible
to use M(fx) rather than |A |, or |A7|. for some j = 1 (Theorem 5.1 of (Bosq, 2000))
as a measure of stability of the process.

Definition 2. For all k-dimensional subprocesses of {Xi(-)}iez, i.e. {(Xe())) :j €
J}tGZ’ for J < {1,...,p} and |J| < k, we define the corresponding functional stability
measure by

(P, fx,0(®))n
Mi(fx) =2m- esssup = k=1,...,p. 6
k(fx) ve[—r,7],| B|o<k,det, (BsZ0(P))m ©)
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Figure 1. The illustrative VEAR(1) model. Left: ||Al|z as a function of a and b, plotted against
b for different a. Right: M(fx) as a function of a and b, plotted against b for different a.

It is obvious from definitions in Condition 2 and (6) that M;(fx) < Ma(fx) <--- <
M, (fx) = M(fx) < o0 and M;(fx) = maxi<j<p M(fx,), which is allowed to evolve
with p satisfying M (fx) < M~Ce+D{n/log(pM)}*/?, implied from Theorems 3-4 and
Condition 9 below.

2.2. Concentration bounds on ih

Based on n temporally dependent observations X (-), ..., X,(-), we construct an empir-
ical estimator of X by

-~ 1
Yn(u,v) = —

n—h
D X)X ()", h=0,1,..., (u,0) eU>. (7)
t=1

The following theorem provides concentration bounds on f]o under the quadratic and
bilinear forms. These concentration bounds form the core of our theoretical results, which
serve as a starting point to establish further non-asymptotic error bounds presented in
Sections 2.2 and 2.3.

Theorem 1. Suppose that Conditions 1 and 2 hold. Then for any given vectors ®q,
®, € Hy satisfying |®1]o v |P2]o < k with some integer k (1 < k < p), there exists some
universal constant ¢ > 0 such that for any n > 0,

p { (@, (30 — 20)(®1))y
(®1,50(@1)yy

> Mk(fx)n} < 2exp{ — cnmin(n{n)}7 (8)
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and

|

The concentration inequalities in (8) and (9) suggest that the temporal dependence
may affect the tail behaviors via My(fx) in two different ways, depending on which
term in the tail bounds is dominant. With suitable choices of ®; and ®2, we can derive
non-asymptotic results for entries of 3; and relevant estimated terms under a FPCA
framework. For example, under the Karhunen-Loéve expansion of each Xy;(-) (see de-
tails in Section 2.3), choosing ®; = (0,...,0,¢,;,0,...,0)" leads to (®1,30(®1))m = Aji
and (&1, 30(®1 )y = n~? Y 1{Xyj, ¢j1)%, both of which are useful terms in our fur-

ther analysis Moreover, if we choose ®; = (0,. 0,)\]11 2¢Jl, 0,...,0)T and ®5 =

(0,.. 1/2¢km, 0,...,0)T, an application of (9) and some calculations yield elemen-
twise concentratlon bounds on ¥ as stated in the following theorem.

(®1, (30 — 0)(®2))y
(@1, 30(P1) )y + (P2, Zo(P2) )y,

> Mk(fX)n} < 4exp{ - cnmin(nzm)}- 9)

Theorem 2. Suppose that Conditions 1 and 2 hold. Then there exists some universal
constant ¢ > 0 such that for any n > 0 and each 5,k =1,...,p,

PSR =05 > 2Mi(x)Mon} < dexp { — Enmin(r?,n)}, (10)

and
P {HZO - EOHmaX > 2M1(fx)/\077} < 4p? exp{ —én min(nQ,n)}. (11)

In particular, if n > p?logp, where p s some constant with p > V26712 then with
probability greater than 1 — 4p>~ e’ , the estimate EO satisfies

A I
120 — 2o, < 2Mi(fx)Xopr/ in- (12)

Under an independent setting, the diagonalwise concentration properties of f]o were
studied in Koltchinskii and Lounici (2017) and Qiao, Guo and James (2019). In particular,
Koltchinskii and Lounici (2017) established the concentration bound under operator
norm, i.e., with probability greater than 1 — e =% for all § > 1,

~ (v (0) ~ (v (0)
(0) _ $2(0) (0) FEy) O FCE) 6
15 =25 e < 15552 n T YN oY A (13)

where 7( E( =y Z(O) (u, u) dU/HE;(;)HC. By contrast, when Xj(-),...,X,(-) are tempo-
rally dependent, (10) 1mphes that, with probability greater than 1 — 4e™9,

8(0) (0 0) o 0
125 =k ls < ./\/ll(fx)mjaxju 55 (u,u)du (\/; v n) . (14)
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Note (13) and (14) are both essential concentration bounds of independent interests and

share the the common term, §,, ¥ n® i (u, u)du, and the same rate via (n~'6)"/2 v n=16 but

with different multiplicative terms However concentration bounds in (14) under Hilbert—

Schmidt norm with free choices of (4, k) play a crutial role in deriving the convergence

results for PFCA via Theorems 3 and 4 below in a high-dimensional and dependent

setting. In the bounds established in Theorem 24, the effects of temporal dependence

are commonly captured by M (fx) with larger values yielding a slower convergence rate.
We next present similar concentration bounds on f]h’s for h > 0.

Proposition 1. Suppose that Conditions 1-2 hold and h is fized. Then for any given

vectors ®1, ®5 € Hy satisfying | ®1]o v [P2]o < k with some integer k (1 < k < p), there
exists some universal constant ¢ > 0 such that for any n > 0,

» { (®1, (B — ) (®1)),,
(B1, (S — ) (B2)),,

(@1, 50(®1))y
(®1,30(®1) )y + (P2, To(®2) )y

> 2Mk(fX)77} <dep{ - enminG?m)},  (15)

and

|

With the same choices of ®; and P2 as those used in applying Theorem 1 to prove
Theorem 2, the concentration bounds in (15) and (16) can lead to HEh — EhH =

max

> 2Mk(fx)77} < 8exp {—cnmin(nz,n)}. (16)

Op {/\/11 fx)(ogp/n) 1/ 2}. Moreover, these concentration results are useful to address
other important high-dimensional functional time series problems, e.g., high-dimensional
functional factor models and non-asymptotic analysis of dynamic FPCA, as discussed in
Section A of the Supplementary Material (Guo and Qiao, 2022).

2.3. Rates in elementwise £,,-norm under a FPCA framework

For each j = 1,...,p, we assume that X;;(-) admits the Karhunen-Loéve expansion, i.e.
Xii() = Zz 1&]@”( ), which forms the foundation of FPCA. The coefficients &, =
(Xij, b1y, | = 1, namely functional principal component (FPC) scores, correspond to a
sequence of random variables with E (&) = 0, Var(&) = Aj; and Cov(&gi, &) = 0 if
1 # I'. The eigenpairs {(\;i, ¢jl)}l>1 satisfy the eigen-decomposition <E§3) (u, ), )y =
Njigdji(u) with Xj1 = Xjo = --- . We say that Xy;(-) is dj-dimensional if A\;4, # 0 and
Aj(d; +1) = 0 for some positive integer d;. If d; = o0, all the eigenvalues are nonzero and
Xy;(+) is a truly infinite-dimensional functlonal obJect
To implement FPCA based on realizations {Xi;(-),...,X,;(-)}, we first compute the

sample estlmator of 3, O) by Z(O) (u,v) = n 130" | Xy;(u) Xy, (v). Performing an eigen-
i ) ie. <E ( ), ¢]l( )> Xﬂq;jl( )forl 1, leads to estimated eigenpairs

(A ]l,gbﬂ) and estimated FPC scores ftﬂ = <th,q5]l> In the following, we will provide
the non-asymptotic analysis of estimated eigenpairs.

analy51s on 50
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Consistency and Sparsity for High-Dim Funct Time Series 11

2.3.1. FEigenvalues and eigenfunctions

We first impose the following regularity condition.

Condition 3. For each j =1,...,p, all the nonzero eigenvalues of Zgj) are different,
i.e. Aj1 > Ajo > -+ > 0, and there exist some positive constants co and o > 1 such that
Aji — )‘j(l+1) = Coliail forl=1,... 00.

Condition 3 is standard in functional data analysis literature, see, e.g., Hall and
Horowitz (2007) and Kong et al. (2016). The parameter « controls lower bounds for
spacings between adjacent eigenvalues with larger values of a allowing tighter eigen-
gaps. This condition also implies that A\j; > coa™ 17 as A\j = Zf:l{)\jk — Njth41)) =

© p—a-1
Co Zk:l k— . . .

In the following theorem, we present relative error bounds on {A;;} and |¢;; — ¢ji
in elementwise £, norm, which plays an crucial rule for the further consistency analysis
under high-dimensional scaling.

Theorem 3. Suppose that Conditions 1-8 hold. Let M be a positive integer possi-
bly depending on (n,p). If n = M** 2 M3(fx)log(pM), then there exist some positive

constants ¢1 and co independent of (n,p, M) such that, with probability greater than
1 —ci1(pM)~, the estimates {\;i} and {$;i(-)} satisfy

it = Ajt| (6= %zH log(pM)
1<j<r£?§l<M{’ )\]l ’ ‘ Ja+1 " . (17)

We provide three remarks for the relative errors of {le} and H$ﬂ — ¢;1|. First, com-

pared with the non-asymptotic results for the absolute errors of {A;} under an inde-
pendent setting (Qiao, Guo and James, 2019), Theorem 3 does not require the upper
bound condition for eigenvalues. Moreover, when M (fx) remains constant with re-
spect to p, provided that \j; converges to zero as [ grows to infinity, (17) leads to a
faster rate of convergence for small eigenvalues, i.e. |le -\ = Op()\jmfl/Q. Such rate
is also sharp in the sense of Jirak (2016). See also Araya Valdivia (2020), which, un-
der an independent setting, established relative concentration bounds on {le} similar
to Lemma 1 in the Supplementary Material (Guo and Qiao, 2022). Second, when each
X (+) is finite-dimensional with \j; = 0 for [ > d;, the estimators of zero-eigenvalues
enjoy the faster rates due to the property of first order degeneracy (Bathia, Yao and
Ziegelmann, 2010). Third, error bounds on (;Abjl under {5 norm are derived using a well-
known pathway bound in Lemma 4.3 of Bosq (2000). For finite-dimensional functional
objects, such error bounds lead to the optimal y/n-rate. Under an infinite-dimensional
setting, our derived error bounds on ggjl(-)’s can possibly be improved from a probabilistic
perspective as long as [ diverges. Interestingly, Jirak (2016) established a sharper rate by

_1/2H¢>]l oi1] = Op(n=Y2) with Aj; = Zk# #. In particular, when \j; = [~

]l )\]k)2
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12 S. Guo and X. Qiao

witha > 1, A; < < 12 as | — o0. We believe that, with the help of techniques used in Jirak
(2016), the relevant bounds in Theorems 3 and 4 can be further sharpened. The extra
complication, however, will make the theoretical justification of the VFAR estimate in
Section 3 more challenging. We leave the development of optimal results as a topic for
future research.

Finally, we give two remarks on the parameter M. First, M can be viewed as the
truncated dimension of Xy;(-) ~ le\il &j1651(+). In general, M can depend on j, say M,
then the right-side of (17) becomes M, (fx){log(3]}_, M;)/n}/2. Second, the sample size

lower bound in Theorem 3 implies that M < [n/{M3(fx)logp}] 1/(4a+2), which controls
the rate that M can grow at most as a function of n, p, M1 (fx) and «, with larger values
of n or smaller values of p or « allowing a larger M.

2.83.2. Covariance between FPC scores

. h
For each j,k = 1,...,p,,m =1,2,..., and h = 0,1,..., let aj(k;m = E(&it+n)km)
and its sample estimator be G(ng =(n—h)"! Z?flh &tji&(t+h)km- In the second step of
the three-step procedure, our main target is to fit a sparse model based on temporally
dependent estimated FPC scores, {ftjl} To prov1de the theoretical guarantee for this

step, we present the convergence analysis of {U klm} in elementwise {5, norm as follows.

Theorem 4. Suppose that Conditions 1-3 hold and h is fized. Let M be a positive
integer possibly depending on (n,p). If n 2 M**T2M3(fx)log(pM), then there exist
some positive constants ¢z and cq independent of (n,p, M) such that, with probability
greater than 1 — c3(pM) ™, the estimates {8§ng} satisfy

&k — 511 log(pM)
m m O,
max — % < My (fx)n ] 22222

1<j,k< a+1 1/2 1/2 ~
ISTESE (L v m)et A"

(18)

We provide three comments here. First, compared with the convergence rate of ab-

solute errors of {ar klm} under an independent setting, i.e. |U]klm - J(%m| = Op{(l +

m)+in=1/2} (Qiao, Guo and James, 2019), we obtain that of scaled errors of {O'(h) }

Jklm
as )f”ﬁ;ﬁ/ﬂ&;:;m Jklm| = Op{M;(fx)(l v m)>*1n=1/2} which can more precisely

characterize the effect of small eigenvalues on the convergence. Second, in the spemal

case of j = k and [ = m with O‘J(ng

jll\)\jl — Aji|, would correspond to a faster convergence rate due to (17). Third, if we
relax Condition 3 by allowing the parameter a to depend on j, the resulting scaled error

rate becomes )\;11/2)\,;;/2@](.2?”@ — Uj(Zlm OP{Ml Fx)(199FL ety —1/2}

= \j; and O‘(J?l = )\Jl, the scaled errors of {0””} ie.
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Consistency and Sparsity for High-Dim Funct Time Series 13
3. Vector functional autoregressive models

Inspired from the standard VAR formulation, we propose a VFAR model of lag L, namely
VFAR(L), which is able to characterize linear inter-dependencies in {X¢(-)}:ez as follows

Xi(u) = f Ap(u,v)Xy—p(v)dv + e (u), t=L+1,...,n, (19)

h=1
where &,(-) = (e1("), .- ,etp(-))T are independently sampled from a p-dimensional vec-
tor of mean zero Gaussian processes, independent of X;_1(-), X¢—2(*),..., and A} =

(h)
( Jk )léj,kép
tion functions provides insights into the temporal and cross-sectional inter-relationship
amongst p functional time series. To make a feasible fit to (19) in a high-dimensional
regime, we assume the functional sparsity in Ay,..., Ay, i.e. most of the components in
{X(t_h)k() ch=1,...,Lk=1,... ,p} are unrelated to X;;(-) for j =1,...,p

Due to the infinite-dimensional nature of functional data, for each j, we take a stan-
dard dimension reduction approach through FPCA to approximate X:;(-) using the
leading ¢; principal components, i.e. Xy;(-) f S &ada() = &,;0,(-), where §,; =
(Etjrs -5 Eig)"s D5() = (#1(), -, djq; (-)) and g; is chosen data-adaptively to pro-
vide a reasonable approximation to the trajectory Xi;(-).

Once the FPCA has been performed for each th( ), we let V(h) e R("=1)%4 with its
row vectors given by &, 1_pyjs -+ &(n_n); and \Iljk =§u S, ol A(h)(u v);(u)"dudv €

R >4 Then further der1vat1ons in Section F.1 of the Supplementary Material (Guo and
Qiao, 2022) lead to the matrix representation of (19) as

is the transition function at lag h with A;Z) € S. The structure of transi-

L p
v =3 N viPel LR +E;, =1, (20)
h=1k=1

where R; and E; are (n — L) x ¢; error matrices whose row vectors are formed by the
truncation and random errors, respectively. Hence, we can rely on the block sparsity pat-

tern in {\1152) ch=1,...,L,j,k =1,...,p} to recover the functional sparsity structure
in {Ay,i) ch=1,...,L,j,k=1,...,p}. It is also worth noting that (20) can be viewed

as a ( ?:1 g;)-dimensional VAR(L) model with the error vector consisting of both the
truncation and random errors.

3.1. Estimation procedure

The estimation procedure proceeds in the following three steps.
Step 1. We perform FPCA based on observed curves, Xi;(-),...,Xp;(-) and thus

obtain estimated eigenfunctions ¢ () = (d)ﬂ() ...,qﬁjq_?( ))T and FPC scores &;; =
(&;1» e ,§tjqj> for each j. See
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14 S. Guo and X. Qiao

Step 2. Motivated from the matrix representation of a VFAR(L) model in (20), we
propose a penalized least squares (LS) approach, which minimizes the following optimiza-

. . h
tion criterion over {\Il;k) ch=1,...,Lk=1,...,p}:

L p
-3 Ve
h=1k=1

where \Af§h), the estimate of Véh), is a (n — L) x ¢; matrix with its i-th row vector

1
2

L »p
+ Vg Z Z e (21)

given by E(LJri_h)j fori =1,...,(n— L), and 7,; > 0 is a regularization parameter.
The ¢1/¢s type of standardized group lasso penalty (Simon and Tibshirani, 2012) in
(21) forces the elements of \Ilgz) to either all be zero or non-zero. Potentially, one could

modify (21) by adding an unstandardized group lasso penalty (Yuan and Lin, 2006) in
the form of y,; S, P _, H\Ilgl,? HF to produce the block sparsity in {\Ily,?} However,

orthonormalization within each group would correspond to the uniformly most powerful
invariant test for inclusion of a group, hence we use a standardized group lasso penalty
here. In Section G.3 of the Supplementary Material (Guo and Qiao, 2022), we develop a
block version of fast iterative shrinkage-thresholding algorithm (FISTA), which mirrors
recent gradient-based techniques (Beck and Teboulle, 2009; O’Donoghue and Candes,

~ (h
2015), to solve the optimization problem in (21) with the solution given by {\Ili-k)}. The

proposed block FISTA algorithm is easy to implement and converges very fast, thus is
suitable for solving large-scale optimization problems.

. . . . h
Step 3. Finally, we recover the functional sparse estimates of elements in {Agk)} by

~ (h
the block sparse estimates in {‘I’ik)} via
AW (0 0) = (o) 80D (), h=1,....L, jk=1 22
ik (u71])_¢k}(v) Jk ¢j(u)7 =L.... L pr=14...,D ( )

2. Functional network Granger causality

In this section, we extend the definition of network Granger causality (NGC) under a
VAR framework (Liitkepohl, 2005) to the functional domain and then use the extended
definition under our proposed VFAR framework to understand the causal relationship in
{X:()} ez

In an analogy to the NGC formulation, a functional NGC (FNGC) model consists
of p nodes, one for each functional variable, and a number of edges with directions
connecting a subset of nodes. Specifically, functional times series of { Xy (-) }ez is defined
to be Granger causal for that of {Xy;(-)}iez or equivalently there is an edge from node k to
node j, if Ay;) (u,v) # 0 for some (u,v) € U? or h € {1,..., L}. Then our proposed FNGC
model can be represented by a directed graph G = (V, E) with vertex set V = {1,...,p}
and edge set

{(k‘ j): A(h)(u v) # 0 for some (u,v) eU? or he {1,...,L},(j, k) € VQ}.
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Consistency and Sparsity for High-Dim Funct Time Series 15

It is worth noting that, at lag h, HAE};) |s can be viewed as explaining the global Granger-

type casual impact of X (-) on X;(-), while A;Z) (u, v) itself accounts for the local Granger-
type casual impact of Xj(v) on X;(u). To explore the FNGC structure and the direction
of influence from one node to the other, we need to develop an approach to estimate F,
i.e. identifying the locations of non-zero entries in A4, ..., Ay under the Hilbert-Schmidt
norm, the details of which are presented in Section 3.1.

3.3. Theoretical properties

According to Section F.2 of the Supplementary Material (Guo and Qiao, 2022), all
VFAR(L) models in (19) can be reformulated as a VFAR(1) model. Without loss of
generality, we consider a VFAR(1) model in the form of

Xi(u) = J A(u,v)Xi1(v)do + er(u), t=2,...,n, uel.
u

To simplify our notation in this section, we focus on the setting where ¢;’s are the
same across j = 1,...,p. However, our theoretical results extend naturally to the more
general setting. In our empirical studies, we select different g;’s, see Section G.1 of the
Supplementary Material (Guo and Qiao, 2022) for details. Let Z= ({/'gl), . ,\A/'I(Jl))T €
RO-Dxpa @5 = ()7, (")) € RP7¥9. and D = diag(Dy, ..., D,) e RP*Pd,
where Dy, = {(n— 1)_1({/',21))T\A/,(€1)}1/2 € R?7%? for k = 1,...,p. Then minimizing (21)
over ¥; € RP?*4 is equivalent to minimizing the following criterion over B; € RP4*9,

5By + By TB) + g B, (23

where ?j =(n-— 1)_1]5_12T\A7§-0)7 I'=(n—1)"'D'Z"ZD!. Let f_’»j be the minimizer
of (23), then 'ilj = ﬁ_lﬁj with its k-th row block given by \iljk and A = (Ajk) with its
(4, k)-th entry, ﬁjk(u,v) = g?)k(v)T\iljkaSj(u) for j,k=1,...,pand (u,v) € U>.

Before imposing the condition on the entries of A = (A;x), we begin with some
notation. For the j-th row of A, we denote the set of non-zero functions by S; = {k €
{1,....p} : |Ajils # 0} and its cardinality by s; = |S;| for j = 1,...,p. We also denote
the maximum degree or row-wise cardinality by s = max;s; (possibly depends on n

and p), corresponding to the maximum number of non-zero functions in any row of A.
For a sparse VFAR(L) model in (19) with sj, = >7_; I(|\A§Z)HS #0)forj=1,...,p
and h = 1,..., L, according to Section F.2 of the Supplementary Material (Guo and
Qiao, 2022), the equivalent sparse VFAR(1) model in (F.47) has the maximum degree

s = max; (), sjn) < max;p, sj, assuming a fixed lag order L.
Condition 4. Foreachj=1,...,pandke S;, Aji(u,v) = mezl @jkim @1 (W) Pl (V)

and there exist some positive constants B > /2 + 1 and pj such that |ajrim| < el +
m)~ P12 forl,m > 1.
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16 S. Guo and X. Qiao

For each (j, k), the basis with respect to which coefficients {a;jxim }1,m>1 are defined is
determined by {¢;i(-)}i=1 and {@rm(-)}m=1 The parameter 5 in Condition 4 determines
the decay rate of the upper bounds for coefficients {a;xim }i,m>1 and hence characterizes
the degree of smoothness in {4, }, with larger values of § yielding smoother functions. See
also Hall and Horowitz (2007) and Kong et al. (2016) for similar smoothness conditions
in functional linear models.

We next establish the consistency of the VFAR estimate based on the sufficient con-
ditions in Conditions 5-7 below. To be specific, we first establish an upper bound on
[A — Al in Theorem 5 below. Using the convergence results in Section 2.3, we then
show that all VFAR models in (19) satisfy Conditions 5-7 with high probability through
Propositions 2—4 below. As a consequence, the error bound in Theorem 5 holds with high
probability.

Before stating these conditions, we give some notation. For a block matrix B = (Bj;) €
RP19%P29 with its (j, k)-th block Bj, € R7*9, we define its g-block versions of Frobenius

norm, elementwise £o, norm and matrix £; norm by |B|g = (Zj’k IB;ixl|%) 1/2, HBHE{{;X =

max;  [Bjx|r and HBng) = maxy, }; [|Bjk|r, respectively.

Condition 5. The symmetric matric T' e RpaxPa satisfies the restricted eigenvalue
condition with tolerance 71 > 0 and curvature 7o > 0 if

0°T6 > 7,0|> — 71|02 VO c R, (24)

Condition 5 comes from a class of conditions commonly referred to as restricted eigen-
value (RE) conditions in the lasso literature (Bickel, Ritov and Tsybakov, 2009; Loh and
Wainwright, 2012). Intuitively speaking, Condition 5 implies that 9T1€‘0/||9||2 is strictly
positive as long as |01 is not large relative to ||@|. Denote the estimation error by
A = ]§j — B, this condition ensures that <<Aj,f‘Aj>> > 7o Aj|IE/2 if T2 = 3271147,
as stated in Theorem 5 below.

Condition 6. There exist some positive constants Cy and Cy independent of (n,p,q)
such that

U2 T2

il il log(pq
max | F— P < WM (fx) 8(pa)
1<j<p,1<i<q A\ n
gt (25)
~ log(pg)
o hall < o+l, [ ZSTH)
L ax d = il < CoMa(fx)g P

Condition 7. There exits some positive constant Cg independent of (n,p,q) such that

(q)

max

log(pg)

H?a‘ - fBj) < CEMl(fX)Sj{qa+2 ——+ q‘5+1}, j=1,....p. (26)
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Consistency and Sparsity for High-Dim Funct Time Series 17

Condition 6 and 7 are two deviation conditions, which guarantee the good behaviours
of relevant estimated terms by controlling their deviation bounds. Specifically, Condi-
tion 7 ensures that Y; and I' are nicely concentrated around their population versions.
See also similar deviation conditions in the lasso literature (Loh and Wainwright, 2012;
Basu and Michailidis, 2015).

We are now ready to present the theorem on the convergence rate of the VFAR
estimate.

Theorem 5. Suppose that Conditions 1-7 hold with 5 > 32711¢*s. Then, for any regu-
larization parameter, vy = 2CEM1(fx)sj{qo‘+2(log(pq)/n)1/2 +q_B+1}, Yrn = MaX; Yn;

and ¢**svy, — 0 as n,p,q — 00, any minimizer B, of (23) satisfies
_ 2457y, . 965V ,
IB; - Bjlr < ——", |B; - B;|\¥ < #nj forj=1,...p,
and the estimated transition function, A, satisfies
~ 96a!/2q*/%s
1A - Al < =1 o)) (27)
Coy T2

The convergence rate of A under functional matrix {4 norm is governed by dimension-
ality parameters (n,p, s) and internal parameters (M (fx), ¢, 71, T2, @, 3). We provide
three remarks for the error bound in (27). First, it is easy to see that larger values of «
(tighter eigengaps) or Mi(fx) (less stable process of {X;(-)}) or s (denser structure in
A) yield a slower convergence rate, while enlarging 5 or 7o will increase the entrywise
smoothness in A or the curvature of the RE condition, respectively, thus resulting in
a faster rate. Second, the convergence rate consists of two terms corresponding to the
variance-bias tradeoff as commonly considered in nonparametric statistics. Specifically,
the variance is of the order Op[M;(fx)s2¢®**/2{log(pg)/n}"/?] and the bias term is
bounded by O{Ml(fx)sgq(o‘_25+2)/2}. To balance both terms, we can choose an op-
timal ¢ satisfying log(pq)g®*+2#*2 = n, which leads to ¢ = {n/log(p v n)}¥/(2e+26+2),
Third, when each X;(-) is finite-dimensional, although the truncation step is no longer re-
quired, the FPC scores still need to be estimated. The resulting convergence rate becomes
Op{Ml(fx)s2 (log p/n)1/2}, which is slightly different from that of the high-dimensional
VAR estimate in Basu and Michailidis (2015).

Finally, we turn to verify that, when X4 (), ..., X,(:) are drawn from model (19), Con-
ditions 57 are satisfied with high probability as stated in the following Propositions 2—4.
Before presenting these propositions, we list two regularity conditions.

Condition 8. For ¥, = (zﬁ))Kj pey We denote by Dy = diag(2\Y, ..., 5)) the
diagonal function. The infimum p of the functional Rayleigh quotient of 3 relative to
Dy, defined as follows, is bounded below by zero, i.e.

L= 7 D@, 28)
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18 S. Guo and X. Qiao
where Hy = {® € H : (@, DO((I))>H € (0,00)}.
Condition 9. The sample size n satisfies the bound n = ¢** T2 M3 (fx)log(pq).

In Condition 8, the lower bound on pu, chosen as the curvature 75 in the proof of
Proposition 2, can be understood as requiring the minimum eigenvalue of the correlation
function for X,(-) to be bounded below by zero. Specially, if X;;(-) is d;-dimensional for
j=1,...,pit is easy to show that u reduces to the minimum eigenvalue of the correla-
tion matrix for the (ZJ dj)—dimensic;lal vector, & = (&1, -+ &endys - -5 &apto - -5 Etpd, )
Condition 9 is required here due to its presence in Theorems 3 and 4.

Proposition 2. (Verify Condition 5) Suppose that Conditions 2-3 and 8-9 hold. Then
there exist three positive constants Cr, ¢5 and cg independent of (n,p,q) such that

~ 1
0776 > 0] — CrMy(fx)g™ %WHHH?

with probability greater than 1 — c5(pg) .

Proposition 3. (Verify Condition 6) Suppose that Conditions 2-3 and 9 hold. Then
there exist four positive constants Cy, Cx c5 and cg independent of (n,p,q) such that
(25) holds with probability greater than 1 — c5(pg)~ce.

Proposition 4. (Verify Condition 7) Suppose that Conditions 2—4 and 9 hold. Then
there exist three positive constants Cg, cs and cg independent of (n,p,q) such that (26)
holds with probability greater than 1 — c5(pg)~°6.

Propositions 24 can be proved by applying the convergence results in Theorems 3 and
4. With suitable choices of common constants c5 and cg in Propositions 2—4, we can show
that the joint probability for the three events corresponding to the non-asymptotic upper
bounds in (17) and (18) is greater than 1 — c¢5(pg)~°¢. Consequently, with probability
greater than 1 — c¢5(pg) ¢, the estimate A satisfies the error bound in (27).

3.4. Simulation studies

In this section, we conduct a number of simulations to compare the finite-sample perfor-
mance of our proposed method to potential competitors.

In each simulated scenario, we generate functional variables by Xy;(u) = s(u)"6y; for
j=1,...,pand u € Y = [0,1], where s(-) is a 5-dimensional Fourier basis function
and each 6, = (07,,...,03,)" € R is generated from a stationary VAR(1) process, 6, =
B6,_1+m,, with block transition matrix B € R°*°P_ whose (j, k)-th block is given by By,
for j,k =1,...,p and innovations n,’s being independently sampled from N(0,1I5,). To
mimic a real data setting, we generate observed values, Wy;,, with measurement errors,
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Consistency and Sparsity for High-Dim Funct Time Series 19

Wijs = Xij(us) + eyjs, from T' = 50 equally spaced time points, 0 = u1,...,ur = 1 with
errors ey;s’s being randomly sampled from N (0,0.5%). In our simulations, we generate
n = 100 or n = 200 observations of p = 40 or p = 80 functional variables, and we aim to
show that, although our method is developed for fully observed functional time series,
it still works well even for the dense design with measurement error. It is worth noting
that, as discussed in Section 1, the VFAR estimation is naturally a very high-dimensional
problem. For example, to fit a VFAR(1) model under our most “low-dimensional” setting
with p = 40 and n = 200, we need to estimate 40% x 52 = 40,000 parameters based on
only 200 observations.

According to Section F.3 of the Supplementary Material (Guo and Qiao, 2022), X(-)
follows from a VFAR(1) model in (4), where e;(u) = s(u)"n,; and autocoefficient func-
tions satisfy Aji(u,v) = s(u)™Bjs(v) for j,k = 1,...,p, (u,v) € U?. Hence, the func-
tional sparsity structure in A can be characterized by the block sparsity pattern in B.
In the following, we consider two different scenarios to generate B.

(i) Block sparse. We generate a block sparse B without any special structure. Specif-
ically, we generate B;, = w;;Cj for j,k = 1...,p, where entries in Cj; are
randomly sampled from N (0, 1) and wj;’s are generated from {0, 1} under the con-
straint of Y.} _, wjr = 5 for each j, such that the same row-wise cardinality for B
can be produced in a blockwise fashion. To guarantee the stationarity of {X:(-)},
we rescale B by :B/p(B), where ¢ is generated from Unif[0.5,1].

(ii) Block banded. We generate a block banded B, with entries in B, being randomly
sampled from N(0,1) if |j — k| < 2, and being zero at other locations. B is then
rescaled as described in (i).

For each j = 1,...,p, we perform regularized FPCA (Ramsay and Silverman, 2005)
on observations {Wy;s} to obtain smoothed estimates of ¢;;(-)’s, and use 5-fold cross-
validation to choose ¢; and the smoothing parameter, the details of which are presented
in Sections G.1 and G.2 of the Supplementary Material (Guo and Qiao, 2022). Typically
gj = 4, 5 or 6 are selected in our simulations. To choose the regularization parameters
Ynj’s, there exist a number possible methods such as AIC/BIC and cross-validation.
While the third one is computationally intensive and remains largely unexplored in the
literature for serially dependent functional observations, we take an approach motivated
by the information criterion for sparse additive models (Voorman, Shojaie and Witten,
2014). For each j, our proposed information criterion is

~ h)
1C; () = nlog{HVj(-o) Z Z VP& (1, HF} ko (g ), (29)
h=1k=1

where k,, = 2 and logn correspond to AIC and BIC, respectively, and df;(v,;) is the
effective degrees of freedom used in fitting (21) with

L p
i (Tnj) Z Z { ( ||(I)gk (Yl F 750) (gjqx—1)

h=1k=1

||Vh)q> h)

(g)I% }
(h) 2 (h) ’

V@ (v )% + Vg

(30)
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Table 1. The mean and standard error (in parentheses) of AUROCSs over 100 simulation runs. The
best values are in bold font.

Model (i) Model (ii)
n Y4 fl/fg—LSa El/fz—LSQ fl—le fl/éz—LSu, fl/fz—LSQ él—le
100 40 0.840(0.018)  0.690(0.019)  0.591(0.023) 0.872(0.016) 0.719(0.022)  0.609(0.024)
80 0.829(0.015) 0.682(0.017) 0.585(0.015) 0.869(0.014) 0.714(0.017)  0.600(0.017)
500 40 0.951(0.011) 0.764(0.020) 0.616(0.021) 0.971(0.006) 0.795(0.018)  0.639(0.023)
80  0.948(0.010) 0.770(0.017) 0.626(0.015) 0.969(0.005) 0.799(0.014)  0.644(0.015)

We compare our proposed ¢;/¢>-penalized LS estimate using all selected principal
components, namely ¢1/¢5-LS,, to its two competitors. One method, ¢;/¢5-LSs, relies on
minimizing ¢, /¢5-penalized LS based on the first two estimated principal components,
which capture partial curve information. The other approach, ¢1-LS;, projects the func-
tional data into a standard format by computing the first estimated FPC score and then
implements an ¢; regularization approach (Basu and Michailidis, 2015) for the VAR esti-
mation on this data. We examine the sample performance of three approaches, ¢ /¢5-LS,,
£1/05-LSs, and ¢1-LS; in terms of model selection consistency and estimation accuracy.

e Model selection. (W? plot the true positive rates agzain)st false positive rates,
#{(5,k):[|A 7| s#0 and ||A;x||s#0 #{(5,k):||A 7| s#0 and ||A;x||s=0
defined as D e and O
spectively, over a sequence of v, = (VYn1,. - ., Vnp) values to produce a ROC curve.
We compute the area under the ROC curve (AUROC) with values closer to one
indicating better performance in recovering the functional sparsity structure in A.
e Estimation error. We calculate the relative estimation accuracy for A by HA —

A|r/|A|p, where A is the regularized estimate based on the optimal regularization
parameters selected by minimizing AICs or BICs in (29).

To investigate the support recovery consistency, we report the average AUROCs of
three comparison methods under both model settings in Table 1. In all simulations, we
observe that ¢;/¢>-LS, with most of curve information being captured, provides highly
significant improvements over its two competitors and ¢1-LS; gives the worst results. To
evaluate the estimation accuracy, Table 2 presents numerical results of relative errors
of different regularized estimates. We also report the performance of the LS estimate in
the oracle case, where we know locations of non-zero entries of A in advance. Several
conclusions can be drawn from Table 2. First, in all scenarios, the proposed BIC-based
£1/05-LS, method provides the highest estimation accuracy among all the comparison
methods. Second, the performance of AIC-based methods severally deteriorate in com-
parison with their BIC-based counterparts. Given the high-dimensional, dependent and
functional natural of the model structure, computing the effective degrees of freedom in
(30) leads to a very challenging task and requires further investigation. In practice, with
some prior knowledge about the targeted graph density under a FNGC framework, one
can choose the values of ,; that result in the graph with a desired sparsity level. Third,
LSoracle estimates give much worse results than BIC-based regularized estimates. This
is not surprising, since even in the “large n, small p” scenario, e.g. n = 100,p = 40 for
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Table 2. The mean and standard error (in parentheses) of relative estimation errors of A over 100
simulation runs. The best values are in bold font.

Model (n,p) Y £1/02-LS, £1/02-LS2 £1-LSy LSoracle
o A Aol e ok o
(200,40) gy 0.55050'.012)) 0:%9%0:003; 0:999E0:002§ 0.990(0.029)
C0080) BIC opra(0.018) 09040008 1 000(0001) 0160053
(10040)  BIC 087(0.008)  0905(0.005) 1 000(0.005) 13630059
(20040) gy 0.524&0'.003) 0:98520:0033 0:99850:002; 0.909(0.024)
C0080) TG gasn(0.010) 0900(0.000) 096800001 "926(0019)

Model (i), implementing LS requires estimating 5 x 5% = 125 parameters based on only
100 observations, which intrinsically results in a high-dimensional estimation problem.

3.5. Real data analysis

In this section, we apply our proposed method to a public financial dataset, which was
downloaded from https://wrds-web.wharton.upenn.edu/wrds. The dataset consists
of high-frequency observations of prices for a collection of S&P100 stocks from n = 251
trading days in year 2017. We removed several stocks for which the data are not available
during the observational period. See Table 3 in the Supplementary Material (Guo and
Qiao, 2022) for tickers, company names and classified sectors of the inclusive p = 98
stocks. We then obtained data at a sampling frequency one-minute per datum such that
the impact of microstructure noise is reduced (Zhang, Mykland and Ait-Sahalia, 2005).
The daily trading period (9:30-16:00) is thus converted to U = [0,T] with T" = 390
minutes. Let Py;(ug) (t=1,...,n,j=1,...,p,k =1,...,T) be the price of the j-th stock
at intraday time wug on the ¢-th trading day. We denote the cumulative intraday return
(CIDR) trajectory, in percentage, by r¢;(uy) = 100[log{P;; (ux)}—log{ P, (u1)}] (Horvath,
Kokoszka and Rice, 2014). This transformation not only guarantees the shape of CIDR
curves nearly the same as original daily price curves, but also makes the assumption of
stationarity for curves more plausible. According to the definition, CIDR curves always
start from zero enforcing level stationary and the logarithm helps reduce potential scale
inflation. See Horvath, Kokoszka and Rice (2014) for an empirical study on testing the
stationary of CIDR curves.

Our main target is to construct a directed graph under a FNGC framework and to
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display the Granger-type casual relationships among intraday returns of different stocks.
To achieve this goal, we first center all the series of {r.;(-)} about their empirical means
and then apply the three-step approach to fit a sparse VFAR(1) model on the demeaned
curves. In the first step, we implement regularized FPCA to smooth these curves and
therefore the effects of microstructure noise are further reduced to be almost negligible.
See Sections G.1-G.2 and G.3 of the Supplementary Material (Guo and Qiao, 2022) for
details on regularized FPCA with the selection of relevant tuning parameters and block
FISTA algorithm, respectively.

Figure 2. Left and right graphs plot the directed networks with indegree=3 for p = 14 stocks in
the financial and IT sectors, respectively.

To better visualize and interpret the network, we focus on p = 14 stocks in the finan-
cial and information technology (IT) sections, respectively and set the row-wise sparsity
to 3/14, i.e. each node receives connections from 3 (indegree) out of 14 nodes. A more sys-
tematic method for determining the network sparsity level, e.g. via a significance testing,
needs to be developed. Figure 2 displays two directed networks based on the identified
sparsity structures in A (estimated transition function) for stocks in two sectors. It sug-
gests that “MET” (Metlife) and “INTC” (Intel) together with “PYPL” (PayPal), placed
in the center of each network, provide the lowest levels of column-wise sparsity in the
financial and IT sectors, respectively, thus resulting in highest Granger-type causal im-
pacts on all the stocks in terms of their CIDR curves. Moreover, we consider p = 28
stocks in both financial and IT sectors. Setting the row-wise sparsity to 1/7, we plot a
larger directed graph in Figure 3. We observe that more IT companies, e.g. PayPal, Qual-
comm and Intel, have relatively higher causal impacts. Interestingly, PayPal, as a leading
financial technology (FinTech) company belonging to both financial and IT sectors leads
to the the highest causal influence on others. See also Section H.2 of the Supplementary
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Figure 3. The directed graph with indegree=4 for p = 28 stocks in the financial and IT sectors.
Material (Guo and Qiao, 2022) for additional empirical analysis.
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