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Abstract

Using the Becker-DeGroot-Marschak (BDM) mechanism, we estimate the willingness-to-
pay (WTP) for and impact of clean water technology through a field experiment in Ghana.
Although WTP is low relative to the cost, demand is relatively inelastic at low prices. In the
short-run, treatment effects are positive – the incidence of children’s diarrhea falls by one third
– and consistent throughout the WTP distribution. After a year, use has fallen, particularly
for those with relatively low valuations. Strikingly, the long-run average treatment effect is
negative for those with valuations below the median. Combining estimated treatment effects
with individual willingness-to pay measures implies households’ valuations of health benefits
are much smaller than those typically used by policymakers. Finally, we explore differences
between BDM and take-it-or-leave-it valuations and make recommendations for effectively
implementing BDM in the field.
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1 Introduction

Unsafe drinking water is a significant threat to health and welfare in the developing

world. Approximately 30 percent of the world’s population lacks access to safe water, and

diarrheal disease kills nearly 1.4 million people per year, including over 500,000 children

under age five. The problem is especially acute in sub-Saharan Africa, where diarrheal

disease causes nearly 10 percent of deaths of children under age five, and 41 percent of the

rural population drinks water from unimproved sources (WHO 2016; WHO and UNICEF

2017). Rural infrastructure improvements, such as bore wells or spring protection, suffer

from poor governance, frequent outages, and recontamination of water between collec-

tion and consumption (Wright et al. 2004; Kremer et al. 2011), leading to interest in house-

hold water treatment as a potentially attractive alternative. Simple, relatively inexpensive

technologies are known to be micro-biologically effective and have reduced diarrhea in

controlled field trials (Clasen et al. 2015).

Despite these potential benefits, demand for household water treatment is typically

low (Ahuja et al. 2010). This is an example of a general puzzle in development eco-

nomics: households appear to underinvest in seemingly beneficial technologies across

many domains (Foster and Rosenzweig 2010; Jack 2011; Dupas and Miguel 2017). When

demand is low, measuring willingness-to-pay (WTP) provides a key input for pricing pol-

icy, guiding the magnitude and targeting of subsidies. Furthermore, understanding the

relationship between WTP and a product’s benefits is critical for distinguishing when the

price mechanism allocates goods where their benefits are greatest and when it simply re-

duces access. In addition, combining measures of WTP with estimated treatment effects

can yield insights into how households value health.

We study the demand for and impact of a household water filter in a field experiment

with 1,265 households in rural northern Ghana. The filter requires effort to use, but if used

properly produces safe drinking water for the household. After normal marketing efforts,

we made sales offers to households and distributed the filters to those who purchased it.
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We conducted follow-up surveys one month and one year after the sale to measure filter

use and health outcomes related to water quality.

In our study we used the Becker-DeGroot-Marschak mechanism (BDM, Becker et al.

1964) to elicit precise measures of WTP. In BDM, an individual states her bid for an item.

Then a random price is drawn. If the random price is greater than her bid, she cannot

purchase the product. If the random price is less than or equal to her bid, she purchases

the product, but pays the random price draw rather than her stated bid. Because the

subject’s stated WTP affects only whether or not she purchases the item, not the price

she pays, BDM is incentive-compatible: the subject’s dominant strategy is to bid her true

maximum WTP.1 In contrast to take-it-or-leave-it (TIOLI) offers, which yield only a bound

on WTP, BDM produces an exact measure. In addition, BDM induces random variation

in both treatment status and price paid, conditional on WTP. This allows researchers to

separately identify screening and sunk cost effects.2 Embedded in a field experiment,

BDM can extract richer information than is typically available, but with the potential cost

of added complexity. To assess the performance of BDM in a field setting, we randomly

allocated half the households to a BDM sales treatment and half to a more traditional sales

treatment using a TIOLI offer at a random price.

This study makes five contributions. First, we measure demand for clean water tech-

nology in a population facing a stark decision: how much of their scarce resources should

they allocate to improving poor water quality? Demand estimates can provide impor-

tant information on welfare and policy priorities, but measuring demand in developing

countries is difficult because revealed-preference tools such as hedonic valuation or com-

1Deviations from expected-utility maximization may lead a subject’s optimal bid to deviate from her
true maximum WTP (Horowitz 2006), which we discuss in Section 6 below.

2Screening and sunk-cost effects typically cannot be separately identified, either in observational data
or through TIOLI offers. Karlan and Zinman (2009) and Ashraf et al. (2010), among others, use a second-
stage randomized discount to identify the causal effect of price paid. However, for the first-stage offer price
to be incentive-compatible, subjects cannot anticipate the possibility of a second-stage discount. This is not
feasible in many contexts, including ours, since information spread quickly within villages. By contrast,
BDM allows a researcher to identify screening and sunk-cost effects in a single stage, without a surprise
discount. In this paper, we focus on screening effects because we find no evidence of sunk-cost effects (see
Appendix E).
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pensating differentials rely on strong assumptions of complete markets (Greenstone and

Jack 2015). This paper adds to a small but growing literature measuring demand for

health goods directly through sales to households.3 Similar to previous research for other

preventative health products, demand is low. Median WTP is only 10 to 15 percent of the

manufacturing cost, and demand is close to zero at a break-even price. However, almost

all households have positive WTP, and demand is relatively inelastic at low prices.

Second, we use exogenous variation in filter allocation provided by our sales exercise

to estimate the causal effect of receiving the filter on child health. In the short run, the

filter reduces the probability that a child aged five or under has a case of diarrhea in

the previous two weeks by about 7 percentage points, relative to the baseline rate of 21

percent. However, these benefits do not persist. The average treatment effect of the filter

at our one-year follow-up visit is negative: diarrhea increased.

Third, we shed light on this surprising finding by estimating the distribution of treat-

ment effects with respect to WTP. The importance of estimating distributions of treatment

effects to policy analysis and uncovering structural parameters has been emphasized in

the marginal treatment effects (MTEs) literature (Heckman and Vytlacil 2007), but estimat-

ing MTEs typically requires strong structural assumptions or multiple or multi-valued

instruments. In contrast, by jointly eliciting WTP and generating exogenous variation in

treatment conditional on WTP, BDM allows us to estimate the distribution of MTEs with

respect to WTP in a simple and transparent way.4 We find that after one year, the ben-

efit of the filter is increasing in WTP, and the negative effect occurs in households with

below-median WTP. The pattern of filter use resembles the pattern of treatment effects:

households with low WTP were less likely to be using the filter after one year, suggest-

ing that household effort, in particular proper maintenance and use of the filter, is an

3See, for example, Ashraf et al. (2010), Cohen and Dupas (2010) and Guiteras et al. (2015). Ito and Zhang
(2016) provide an alternative approach using observational data, carefully isolating the price premium for
goods with varying environmental benefits.

4The ability of BDM to improve information extraction from randomized control trials is emphasized
by Chassang et al. (2012), who describe BDM as a type of a “selective trial.”
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important mediator of benefits. These findings have two important implications. First,

in this sample, charging a positive price would allocate the filter to households where it

is beneficial. Second, it underscores the importance of household behavior. Even tech-

nologically sound health products may not achieve their potential without appropriate

household inputs (Brown and Clasen 2012; Hanna et al. 2016).

Fourth, because we have precise revealed-preference WTP data as well as WTP-specific

impacts, we can estimate the distribution of demand for health. This contributes to the

limited set of revealed-preference estimates for the value of health in low-income coun-

tries (Greenstone and Jack 2015). Using our short-run estimates, median WTP to avert

one episode of children’s diarrhea is USD 1.12. With additional assumptions, this implies

a median WTP of USD 3,604 to avoid one statistical child death or USD 40 to avoid the

loss of one disability-adjusted life year, well below standard cost-effectiveness thresholds.

Fifth, by randomizing households to either BDM or TIOLI we can compare the two

mechanisms. Although BDM has the potential to enhance the information gained from

field experiments, little is known about its performance in the field. BDM has been ex-

tensively used in laboratory settings, but anomalous behavior among subjects has been

observed, such as sensitivity to the distribution of draws (Bohm et al. 1997; Mazar et al.

2014) or misunderstanding of the dominant strategy (Cason and Plott 2014). It is there-

fore an open question whether BDM’s potential advantages outweigh its potential draw-

backs. We present what is, to our knowledge, the first direct comparison of BDM and

TIOLI in a developing-country field setting.5 Results from both methods of demand elici-

tation follow a similar pattern and imply similar price elasticities. Furthermore, the cross-

validated, predictive power of BDM estimates for TIOLI behavior is comparable to that

of TIOLI itself. However, TIOLI acceptance rates are above the BDM demand curve. We

explore a number of potential explanations and find that risk aversion accounts for much

of the gap.

5Section 6 summarizes the theoretical and experimental literature studying behavior under BDM.
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The paper proceeds as follows. Section 2 describes the setting and data. Section 3

describes demand for the filter. Section 4 presents the health impacts of the filter and

heterogeneous treatment effects by WTP. Section 5 discusses policy counterfactuals and

WTP for children’s health. Section 6 compares the BDM and TIOLI mechanisms and

discusses implications for future research using BDM. The final section concludes.

2 Experimental Setting and Design

We study the Kosim water filter (Figure A1), marketed in northern Ghana by Pure Home

Water, an NGO. The filter consists of a clay pot treated with colloidal silver and a plastic

storage container with a tap. The filter is micro-biologically effective, removing more

than 99 percent of E. coli in field trials (Johnson 2007). This effectiveness is sustained with

proper use: field tests one to three years after purchase found that well-maintained filters

remove more than 95 percent of E. coli (Clopeck 2009). At the time of the study, the cost

of production and delivery to a rural household in a village-level distribution was about

GHS 21 (USD 15). We offered the filter to 1,265 respondents in 15 villages in Northern

Ghana between October 2009 and June 2010. To select our sample, we identified villages

that had limited access to clean drinking water and had not previously been exposed to

the Kosim filter. Our subjects were women who were primary caregivers of children.6

Figure A2 provides an illustrative timeline.

2.1 Data Collection and Experimental Design

2.1.1 Preliminary Activities & Household Survey

MARKETING MEETING. In each village, we held an initial village meeting. The NGO

conducted its usual demonstration and marketing, and our field staff demonstrated the

6These were primarily mothers, but occasionally were others caring for children whose parents had
migrated or were permanently absent for other reasons. We also included pregnant women and women
who might become pregnant (married and of childbearing age).
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sales mechanisms. During these demonstrations, field staff performed mock versions of

BDM and TIOLI for a token item. The staff also practiced the sales mechanisms with

volunteer attendees, again for a token item. We informed villagers that a filter would be

installed at the village health worker’s home and encouraged them see it in use, taste the

water, and ask questions. We announced that we would visit households in two weeks to

sell the filter and encouraged them to discuss with their families what they were willing

to pay. The two-week interim period was to allow families time to try the filter, determine

their WTP, and obtain necessary funds. On the same day as the marketing meeting, we

conducted a village census to identify subjects.

REMINDER VISIT AND WATER QUALITY TESTING. One week later, we visited each

household to remind them of the upcoming sale. In all households, we collected a 100 ml

sample of drinking water. Budget constraints prevented testing all samples, so we tested

levels of E. coli and turbidity in a randomly-selected half of the samples.

HOUSEHOLD SURVEY. One week after the reminder visit, we conducted the survey

and sales visit. The survey included demographics, asset ownership, water collection

and treatment practices, basic health knowledge, and recent episodes of diarrhea among

household members. Subjects were compensated with GHS 1 cash, given in small coins

so respondents could submit fine-scale bids in the practice rounds described below. There

were always at least 30 minutes between the gift and the sale.

2.1.2 Filter Sale

At the end of the survey, we conducted the sale. Respondents were randomized in

roughly equal proportions to either a BDM or TIOLI sales treatment.7 Treatments were

randomized at the compound level, stratified by number of respondents in the com-

7Within each broad category, we included three sub-treatments, described in Appendix J, to examine
mechanisms underlying differences between BDM and TIOLI responses. However, demand was statisti-
cally indistinguishable by sub-treatment, and we group sub-treatments together for the primary analysis.

6



pound.8 Each sale began with a practice round in which we offered the respondent the

opportunity to purchase a bar of soap with retail value of GHS 1 using her assigned sales

mechanism. After the practice round, we offered the Kosim filter using the same mech-

anism. If a sale resulted, the subject paid for the filter and received a receipt that could

be redeemed for the filter at a central location in the village, typically the health liaison’s

home. To maintain realism – households routinely make small loans to each other for

purchases – we permitted households to gather the money by the end of the day. If the

respondent initially agreed to the purchase but was ultimately unable to obtain the funds,

we code her as not purchasing. Our scripts are provided in Appendix A.

BDM TREATMENT. First, the surveyor read a brief description of the BDM procedure.

We emphasized that the respondent would have only one chance to obtain the filter, could

not change her bid after the draw, and must be able to pay that day. The surveyor then

played a practice round for the bar of soap. The respondent was asked to bid her max-

imum WTP for the soap. The surveyor then asked the respondent if she would want to

purchase the soap if she drew slightly more than her bid. The respondent was then al-

lowed to adjust her bid. This process repeated until she was no longer willing to adjust

her bid. Next, the surveyor reminded her that if she drew a price equal to her bid she must

be willing and able to make this payment. At several points during the process, the sur-

veyor reviewed various hypothetical outcomes to test the respondent’s understanding.

Once the final bid was established, the price was drawn and the subject either purchased

or did not purchase the soap. The procedure for the filter was similar.9

We did not require respondents to present cash in the amount of their bid before the

draw. However, before the draw, we asked multiple times whether the respondent would

8Most subjects live in extended patrilineal family compounds, small clusters of individual huts, usually
enclosed by a wall. Many resources are shared within the compound, although in most cases each mother
is responsible for providing water for her husband and children.

9Prices were written on wooden beads and placed in an opaque cup. The subject drew the price herself.
For soap, the prices were distributed uniformly from 0 to 100 in increments of 10 pesewas (GHS 0.10). For
the filter, the distribution of prices was 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 11, 12 in equal proportions.
In neither case did we inform respondents of the distribution.
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have access to the necessary funds. Of the 272 respondents who drew a price less than or

equal to their bid, 269 (98.9 percent) completed the purchase. For the three respondents

who did not, their failure to purchase appears to have been due to an unexpected inability

to gather funds, for example because a family member was unavailable.

TIOLI TREATMENT. The standard TIOLI treatment was a simple sales offer at a ran-

domized price. We emphasized that there would be no bargaining. We first conducted a

practice round for a bar of soap. We then offered the filter at one of three prices: GHS 2,

4, and 6, the approximate 25th, 50th and 75th percentiles of BDM bids in piloting.

2.1.3 Follow-up Surveys

We conducted follow-up surveys one month and one year after the sale.10 BWe obtained

caretaker reports on diarrhea over the previous two weeks among children aged five and

under. Among households that purchased the filter, surveyors recorded objective indi-

cators of its condition and use. In the one-year survey, we also measured risk aversion,

ambiguity aversion, digit span, and other preferences and beliefs we hypothesized could

be related to behavior under the two sales mechanisms. Appendix B provides details.

The one-month survey was conducted in all 15 villages. Due to funding constraints,

we randomly selected eight villages for the one-year survey. We re-surveyed 87.1 per-

cent of targeted households in the one-month follow-up and 90.5 percent in the one-year

follow-up. Attrition is largely balanced along observable dimensions. Most importantly,

attrition is not related to the BDM draw or to the TIOLI price. See Appendix C for details.

10With good maintenance practices, in particular regular cleaning of the ceramic element, the filter’s
useful life is expected to be two years. We chose the one-year horizon as half this expected life. In practice,
40-50 percent of filters were found to be undamaged and in use after one year.
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2.2 Sample Characteristics and Balance

Table 1 displays summary statistics, with the full sample in Column 1.11 Only 9 percent

of respondents had ever attended school, and the average number of children aged 0 to

5 was 1.1 per respondent. On average, households had 0.24 episodes of diarrhea among

children aged 0 to 5 in the previous two weeks. Only 19 percent of households had access

to an improved water source year round. Only 11.5 percent of households regularly treat

their water using an effective method such as boiling (10.9 percent) or a ceramic filter (0.6

percent), reflecting the lack of affordable water treatment options.12

Columns 2 and 3 display sample means by treatment (BDM or TIOLI), and Column

4 tests differences between the two. There are a few marginally significant differences:

0.13 fewer children aged 0 to 5 per household in the BDM treatment (p < 0.1), 0.17 more

children aged 6 to 17 (p < 0.1), 0.07 fewer children aged 0 to 5 with diarrhea in the past

two weeks (p < 0.1), and 0.55 fewer respondents in the compound (p < 0.1).

In Column 5, we check balance of the BDM draw by regressing the BDM draw on the

same set of characteristics, as well as the BDM bid. Of the 13 variables in the regression,

one is significant at the 0.1 level: a higher number of respondents in the compound is

associated with a higher draw (p < 0.01). Column 6 regresses the TIOLI price on these

characteristics. Higher prices were associated with more children aged 6 to 17 with diar-

rhea in the past two weeks (p < 0.1) and higher turbidity in stored water (p < 0.01).

11Due to budget constraints, water quality (E. coli and turbidity) was measured for only half of the
sample. Since households were randomly selected for water quality testing, this explanatory variable data
is, by design, missing completely at random (MCAR).

12At the time of the study, household chlorination products were not widely available in Northern
Ghana, and even if they had been the highly turbid source water would have limited their effectiveness. In
a subsequent survey of 12 similar villages in Northern Ghana, Lu (2012) also found no use of chlorine and
low levels of use of other effective treatment methods.
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3 Demand for Filters

This section describes the demand for water filters measured through sales to households.

Here, our focus is on the pattern of demand estimated through either the BDM or TIOLI

mechanisms. Section 6 compares the two mechanisms in detail.

Figure 1a shows the inverse demand curve generated across all 15 villages using data

from all 608 BDM and 658 TIOLI subjects. For the BDM observations, we plot for each

price p the share of subjects whose bid was greater than or equal to p. For the TIOLI

subjects, we show the share who purchased at each of the three randomly-assigned price

points, P = 2, 4, 6.

There are several features of this inverse demand curve worth noting. WTP is almost

universally positive: across the full sample, 95 percent of respondents were willing to pay

at least GHS 1.13 However, WTP is low relative to the filter’s cost: the median BDM bid

of GHS 2.5 corresponds to approximately 10 to 15 percent of the cost of manufacturing

and delivery. This result is consistent with the relatively low WTP for water treatment

and other health goods found in previous work (Ahuja et al. 2010). Figure 1b displays the

price elasticity of demand at prices from 0 to 10 GHS as calculated from the BDM-elicited

WTP data, and, for TIOLI subjects, the arc price elasticity of demand from 0 to 2, 2 to 4,

and 4 to 6. In both groups, demand at low prices is relatively inelastic. In fact, demand

is price inelastic up to roughly the median of the WTP distribution. While the lack of a

steep drop in demand above a price of zero is largely consistent with existing estimates of

demand for health products, we observe less price sensitivity than what has been found

in much of the prior literature (Dupas and Miguel 2017).

13“House money” effects could provide an explanation for high demand at small positive prices; indi-
viduals may be be less price sensitive when spending funds given to them as a participation fee. The sale
of soap before the filter bid allows us to test for such effects. We find no relationship between participation
fees remaining after soap purchase (computed as 1 minus the draw for soap among those who purchased
soap) and the filter bid, conditional on WTP for soap.
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4 Health Impacts and Heterogeneous Treatment Effects

This section presents estimates of the filter’s impact on children’s diarrhea. In Section

4.1, we present standard IV estimates using the random offer price as an instrument for

TIOLI subjects and the random price draw as an instrument for BDM subjects. In Section

4.2, we introduce heterogeneous treatment effects (HTEs) and how we can use BDM to

estimate HTEs, in particular the relationship between effects and WTP. In Section 4.3, we

apply this method and uncover important heterogeneity: benefits and WTP are positively

related in our one-year follow-up data. Section 4.4 shows a similar positive relationship

between use and WTP, and Section 4.5 further investigates mechanisms.

4.1 Average Effects on Child Health

We begin with the basic treatment effects equation

yjic = β0 + β1Tic + ε jic, (1)

where yjic indicates whether child j of subject i in compound c has had one or more cases

of diarrhea in the previous two weeks, Tic is dummy variable indicating whether subject

i purchased the filter, and ε jic captures unobservable determinants of y. The coefficient of

interest is β1, the effect of purchasing a filter on children’s diarrhea.

To instrument for the treatment variable, we estimate the first-stage equation

Tic = γ0 + γ1Pic + vic, (2)

where Pic is the TIOLI offer price for TIOLI subjects and the BDM draw for BDM sub-

jects. Since Pic is random, it is uncorrelated with ε jic and therefore is a valid instrument

for treatment. Table 2 presents the linear probability model estimates of the first stage.

Price strongly predicts treatment, with a 1 GHS reduction in price leading to a 9.3 to 18.4
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percentage point increase in the probability of treatment.

Panel A of Table 2 presents linear 2SLS estimates from our one-month data for the

pooled, TIOLI, and BDM samples. Using the pooled data, the likelihood of diarrhea in

the two weeks before the survey is reduced by about one-third, comparable to other trials

(Ahuja et al. 2010). The estimates for TIOLI and BDM subjects are similar – TIOLI point es-

timates are slightly higher, but not statistically different. In Panel B of Table 2 we examine

our long-term data, collected in a random sub-sample of half our villages. After one year,

there is no evidence of benefits. The point estimates are positive, i.e., the filter appears to

have increased the likelihood of diarrhea. The effect is only statistically significant with

controls, but the point estimates are consistently positive across specifications.14

4.2 Heterogeneous Treatment Effects: Theory

The standard IV approach of the previous subsection estimates a single average treatment

effect. As discussed by Heckman and Urzúa (2010), this may not be the parameter of in-

terest. In our setting, understanding the relationship between benefits and WTP is critical

for pricing policy. It may be that those most likely to benefit are aware of this and have

the resources to pay, in which case charging for the product improves targeting. Alterna-

tively, those likely to benefit may be unaware of the extent to which they will benefit or

simply too poor or credit constrained to purchase, in which case higher prices will restrict

access without improved targeting (Cohen and Dupas 2010). Because BDM both elicits

respondents’ WTP and randomizes treatment conditional on WTP, it provides a simple

way to estimate the relationship between benefits and WTP.

Consider the following econometric model,15 adapted from Heckman et al. (2006),

14The above results assume a linear demand schedule in the first stage. As a robustness check, we
estimated models with a more flexible demand specification: for TIOLI subjects, we use dummies for each
of the three randomized prices (GHS 2, 4, 6); for BDM subjects, we use a quadratic in the random price
draw. The results are similar, see Table A1.

15We provide a more complete treatment in Appendix D.
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which generalizes (1) to allow β1 to vary by WTP :

y = β0 + β1 (w) T + ε. (3)

β1 (w) is the treatment effect for those with WTP = w, and WTP has distribution FWTP(w).

Let β1 = EFWTP [β1 (w)] be the average effect in the population, and let β̃1 (w) = β1 (w)−

β1 be the difference between β1 (w) and this average.

Now, consider the usual case where WTP is unobserved. The estimable model is

y = β0 + β1T + u, (4)

with compound error term u = β̃1 (w) T + ε. OLS estimation of (4) is biased if

E [Tu] = E
[
T
(

β̃1 (w) T + ε
)]
6= 0. (5)

There are two potential sources of bias. The first is selection on levels, E [Tε] 6= 0, when

treatment is correlated with unobservable determinants of y in the absence of treatment.

The second is selection on gains: if WTP and benefits are correlated, then E
[
Tβ̃1 (w)

]
6= 0.

Selection on levels is traditionally addressed by an instrument: a source of variation

in treatment uncorrelated with unobservables. One natural candidate is a randomized

price, Z ∈ {PL, PH}, which for simplicity takes on two values, PL < PH. If demand

is downward-sloping, then Pr (T|PL) > Pr (T|PH), so the instrument is relevant. The

instrument is valid if

E [Zu] = E [Zε] + E
[
Zβ̃1 (w) T

]
= 0. (6)

Since Z is random, E [Zε] = 0, which solves the problem of selection on levels. How-

ever, the problem of selection on gains remains. Since T = 1 {WTP > Z}, if there is a

relationship between WTP and benefits then E
[
Zβ̃1 (w) T

]
6= 0.

Therefore, when there is selection on gains, IV using the offer price Z will not produce
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a consistent estimate of β̄1. By the LATE theorem of Imbens and Angrist (1994), IV does

estimate the average effect on compliers: those whose treatment status is changed by the

instrument. Here, this is the group with PL ≤ WTP ≤ PH, who would buy a filter at PL

but not at PH. Formally, IV using Z estimates

βIV
1 (PL ≤WTP ≤ PH) =

PHˆ

PL

β1 (w) dFWTP (w) ,

the average β1 (w) between PL and PH weighted by FWTP (·). As argued in Heckman

and Urzúa (2010), this may not be a useful parameter, since it only tells us the effect of

changing price from PH to PL in a population with WTP distributed FWTP (·).

BDM provides a simple method to estimate β1 (w).16 Intuitively, BDM provides a mea-

sure of WTP, then the BDM draw randomizes treatment conditional on this measure.17

With a large enough sample, we could estimate the function β1 (w) nonparametrically by

comparing outcomes of winners and losers at each WTP. Our sample is not large enough

to condition on exact WTP, so we compute kernel-weighted linear 2SLS estimates on a

WTP grid.

4.3 Heterogeneous Treatment Effects: Application

The kernel IV approach reveals substantial heterogeneity with respect to WTP. The out-

come variable, as above, is an indicator for whether the child has had one or more cases

16Remarkably, the local instrumental variables (LIV) method of Heckman et al. (2006) can estimate β1 (w)
without observing WTP. LIV estimates a propensity score in a first step, then regresses the outcome on the
propensity score. The BDM approach has the advantage of observing WTP directly, rather than inferring
it through a first-step selection model. This increases power – in our application, confidence intervals are
40% narrower on average. (See comparison in Appendix D.2.) LIV also allows non-price instruments, al-
though continuous, many-valued, or multiple instruments are typically required to estimate the propensity
score flexibly. Furthermore, interpretation is more subtle with non-price instruments since heterogeneity is
estimated with respect to unobservables. See Appendix D.1.

17Using the BDM draw as an instrument requires an exclusion restriction: the draw cannot directly affect
the outcome. This is violated if there are wealth effects, since the draw determines the price paid. This is
a common problem in IV estimation (Jones 2015), and applies equally to random TIOLI prices. Similarly, a
causal effect of price paid on use may violate the exclusion restriction. We do not observe a causal effect of
price paid on use (Appendix E).
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of diarrhea in the previous two weeks. We estimate kernel-weighted treatment effects

β̂1 (w) for each GHS 0.1 step from GHS 1 to GHS 6, which correspond approximately to

the 0.1 and 0.9 quantiles of WTP in the BDM sample.18

Figure 2 presents the kernel first stage: the point estimate on the draw Zi (left axis) and

the associated F-statistic (right axis), at each grid point w = {1, 1.1, . . . , 6}. Results from

the one-month follow-up are in the top panel (a), with results from the one-year follow-up

in the bottom panel (b). The random price draw is negatively associated with treatment,

as expected, and is a statistically strong instrument. These regressions are unconditional;

results with controls are similar.

Kernel IV estimates of the outcome equation are presented in Figure 3. We reverse

the sign of β̂ (w), so benefits are positive. In the top panel (Fig. 3a), we consider the

effect at one month. The point estimates are positive, although not statistically significant

at any level of WTP, and there is little heterogeneity. In the bottom panel (Fig. 3b), we

use the one-year data, and observe important heterogeneity: the perverse negative effect

occurs among those with below-median WTP. The estimated benefit increases with WTP,

becoming positive at roughly GHS 3 and peaking at roughly GHS 4.5. Above GHS 4.5,

point estimates decrease, although confidence intervals are wide. We discuss this finding

at length in Sections 4.5 and 5, but here we emphasize that this implies price is an effective

screening mechanism for this product in this context. In fact, charging 3 GHS would not

just improve targeting, but would actually prevent harm in the medium term.

While the flexibility of the kernel IV and the sample size limit the precision of our

estimates, we can reject that the one-year treatment effects at WTP = 4 and WTP = 2 are

equal (estimated difference β̂ (4)− β̂ (2) = 0.450, std. err. 0.141, p = 0.001). If we assume

that the treatment effect is linear in WTP, the slope term is statistically significant (point

estimate 0.170, std. err. 0.076, p = 0.024).

18Non-parametric estimators are prone to bias at boundaries. Restricting to the 0.1 and 0.9 quantiles of
WTP reduces this risk. Furthermore, our estimator is analogous to a local linear regression rather than a
local constant regression, and local linear regressions are less subject to boundary bias (Li and Racine 2007).
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4.4 WTP and Use

In this section we analyze use of the filter in our one-month and one-year data. The

potential health gains of the filter may not be achieved if it is not used properly or cleaned

regularly. Variation in use over time and across individuals with different levels of WTP

could produce the patterns of impacts observed in the previous section.

We collected three objective indicators of use from all subjects who purchased the fil-

ter: (i) whether the filter was found in the compound and was undamaged; (ii) whether

water was in the plastic storage reservoir above the level of the tap (an indicator of

whether filtered water was immediately available to drink); and (iii) whether water was

in the clay filter pot. To aggregate the three measures in an agnostic way, we create an

index by normalizing each measure to have mean 0 and standard deviation 1 and taking

their average (Kling, Liebman and Katz 2007).

For comparability with our analysis of heterogeneous treatment effects in Section 4.3,

we restrict the sample to winning households with children aged 0 to 5 and model the

relationship between WTP and use nonparametrically using kernel regression. Figure 4

displays these results for both the aggregate use index and, for ease of interpretation, the

indicator of whether filtered water was immediately available to drink.19

In the short term, use is generally high. The filter is present and operational in nearly

90 percent of households that purchased, and filtered water is available to drink in more

than 75 percent. As shown in Figure 4, there is little heterogeneity with respect to WTP.

In contrast, use has fallen substantially in the one-year follow-up. Filtered water is imme-

diately available in fewer than half of households. Although the confidence intervals are

wide, the kernel estimates now reveal substantial variation in use with respect to WTP.

The conditional mean of filtered water being available ranges from 35 percent in house-

holds with a WTP of GHS 2 to 59 percent in households with a WTP of GHS 4 (p = 0.036).

The usage index follows a similar pattern, with a difference of 0.29 standard deviations

19See Table A2 for linear regressions and additional outcomes, with similar results.

16



between those with a valuation of GHS 2 and those with a valuation of GHS 4 (p = 0.096).

The similarity between the patterns of use and of benefits is consistent with effort as an

important mediator of treatment effects. In the short-term, effort is uniformly fairly high

and there is evidence of benefits for most of the population. In the longer-term, effort

and benefits have both fallen overall, and benefits are greatest in the population that is

exerting the most effort.

4.5 Understanding the Pattern of Treatment Effects

In this section, we explore mechanisms behind the detrimental long-run impacts of the

filter observed in the lower half of the WTP distribution, with a formal model and addi-

tional discussion in Appendix H. The possibility that compensatory responses to health

interventions could offset the intended effects has been studied extensively in other con-

texts (e.g., Peltzman 1975; Lakdawalla et al. 2006). In settings closer to ours, Bennett

(2012) finds that the introduction of piped water in the Philippines led to decreased pri-

vate investment in sanitation, reversing the gains from cleaner water, and Gross et al.

(2017) show that improved water sources in Benin led to decreases in point-of-use water

quality, likely through changes in water handling practices. If households perceive the fil-

ter and other health behaviors as substitutes, receiving the filter will reduce other health

investment, assuming that households maximize overall utility, not child health.

While standard models of compensatory behavior could explain a muted benefit, they

would not generate negative effects. However, in our context, certain aspects of the util-

ity or production function may have combined with compensatory behavior to generate

detrimental effects. In Appendix H, we consider three particular mechanisms that may

have been operating. First, households may have failed to adjust other health behaviors

in response to a decrease in the filter’s effectiveness over time. Second, due to limited sup-

ply, adults may have restricted children’s access to filtered water. Third, non-convexities

in health production technology may have led to increases in utility but decreases in
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health.

With the caveat that use is endogenous, the pattern of outcomes and use over time is

consistent with compensatory behavior playing a role in the negative treatment effects.

Diarrhea rates are higher for children in households that purchased the filter but are no

longer using it after a year than in those that never purchased (0.34 vs. 0.24; p = 0.069).

This difference is driven by households that were using the filter after one month, and

hence might rationally engage in compensatory behavior. Among this group, the inci-

dence of children’s diarrhea increases to 0.37 relative to 0.24 for those who never pur-

chased (p = 0.036). Those who purchased but were not using the filter after one month –

and hence were unlikely to engage in compensatory behavior – report outcomes similar

to those who never purchased (0.22). Figure A7 displays these results.

These results add to a nascent literature in economics exploring the role of subjects’

behavior as a moderator of treatment effects (e.g., Chassang et al. 2012; Hanna et al. 2016).

Our analysis also highlights the challenges in studying these mechanisms, which are less

amenable to experimental variation than assignment of a program or product, such as the

filter.

5 Policy Counterfactuals and Valuing Health

In this section, we explore policy implications of the treatment effects estimated above.

First, we analyze the effects of different counterfactual prices to inform optimal pricing

policy. In the short run, prices merely reduce access. In the longer term, prices screen

out those with the lowest benefits and improve allocative efficiency. Second, we estimate

households’ valuation of the filter’s health benefits by combining our treatment effects

estimates with our WTP data. We find low valuations compared with those typically

assumed by policy makers.
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5.1 Policy Counterfactuals

In this section, we show how the distribution of treatment effects estimated above can be

used to simulate impacts of different pricing policies. We consider a social planner who

values disability-adjusted life years (DALYs) at B. The planner’s choice variable is the

sales price P. The social planner places equal weight on subsidy and private expenditure:

P is of interest only for its effect on allocation, not for revenue.

Under these assumptions, the social planner will lower the price P as long as the

marginal cost per DALY is less than B. If the benefits of the filter are constant at all

prices, the marginal cost per DALY will be constant. The filter will be fully subsidized if

the marginal cost per DALY is below B, or not distributed at all if the marginal cost per

DALY is above B. On the other hand, if the benefits of the filter are increasing in price, the

social planner will set the price such that the marginal cost per DALY equals B. At this

point, decreasing the price will include households whose benefits cost more than B, and

increasing the price will screen out households for whom the benefits cost are less than B.

We consider two scenarios. First, we assume that the health gains from the one-month

survey persist for a full year. While in practice the average treatment effects diminished

over time, this provides a bound on the health gains if use patterns could be maintained

over the life of the filter. Since there is little evidence of heterogeneity in the short term,

we assume these effects are constant with respect to WTP. As we describe in more detail

in Appendix F, the constant treatment effects imply that the marginal costs per DALY

gained are constant and equal to USD 369. A social planner valuing DALYs above USD

369 would maximize gains by distributing the filter for free. This value falls below cost-

effectiveness thresholds typically used by policy makers. Although precise thresholds

are subject to debate, the 1993 World Development Report presents interventions costing

less than USD 150 per DALY as cost-effective (World Bank 1993), and this figure has been

cited in a number of subsequent cost-effectiveness analyses (Shillcutt et al. 2009).20

20An alternative—and considerably higher—threshold, used by the WHO-CHOICE project, is one to
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In our second scenario, we assume health effects initially equal our short-term esti-

mates and then evolve smoothly over 12 months to the long-term estimates. We again

assume the short-term effects are constant with respect to WTP and impose a linear func-

tional form on the one-year effects. Because the benefits are now increasing in price, the

marginal and costs per DALY gained are decreasing in price. As we show in Appendix F,

a policymaker with a value per DALY of at least USD 361 would optimally sell the filter

at a price of GHS 4. A lower price would reduce total benefits, and a higher price would

reduce coverage among those whose benefits cost less than USD 361 per DALY.

5.2 Valuing Children’s Health

By combining our WTP data with our estimates of the impact of the filter on child health,

we can directly estimate households’ valuation of children’s health. There are few well-

identified revealed-preference estimates of this parameter, or of WTP for health or envi-

ronmental quality more generally, in spite of its importance for optimal policy (Green-

stone and Jack 2015). A notable exception is Kremer et al. (2011), in which the authors

randomize water quality improvements at springs in Western Kenya and observe how

much additional time households travel to collect better quality water. They then use

wage data to convert this implicit valuation in terms of time to monetary valuation. Us-

ing this travel cost model, estimated mean WTP to avoid a case of children’s diarrhea

equals USD 0.89, which, with additional assumptions, translates to a value of a DALY of

USD 23.7 and a value of a statistical life (VSL) of USD 754. A key advantage of our ap-

proach is that we observe WTP directly, rather than inferring it through travel time and

an assumed value of time. We can simply calculate the household’s observed WTP to

avoid a case of diarrhea as the household’s WTP for the filter divided by the number of

cases avoided over the anticipated life of the filter.

three times annual per capita PPP GDP, or USD 2,997 to 8,991 for Ghana at the time of our study (Hutubessy
et al. 2003).
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While this quantity is simple to calculate in our setting, interpreting it as the house-

hold’s underlying value of child health requires several assumptions. First, households

know the effect of the filter on children’s health. Second, households only value the filter’s

effect on children’s health. That is, the household’s WTP does not reflect other potential

benefits of the filter, such as improved taste or prestige. Third, households only value re-

ductions in diarrhea for children aged five and below. This assumption is made because

diarrhea has more severe health consequences for young children, but it is also made due

to data limitations: our pilot surveys indicated respondents were unable to accurately re-

port diarrhea cases among older children or adults. Fourth, households are not liquidity

constrained. Fifth, using the filter entails no change in convenience or time costs relative

to current practices. We return to these assumptions at the end of this section.

We estimate households’ WTP to avoid a case of diarrhea under two scenarios, making

the same assumptions on treatment effects as in Section 5.1 above.21 In the first scenario,

we use the estimated impact from the one-month follow-up survey to project benefits

over a year. This corresponds to the household believing that its own short-run use and

maintenance practices as well as the filter’s impact will persist over the first year. Again,

we restrict the treatment effect to be constant with respect to WTP since there is little evi-

dence of heterogeneous treatment effects in the short run. Figure 5a plots the distribution

of WTP to avoid a case of children’s diarrhea. The resulting median WTP is GHS 1.58,

or USD 1.12. If we assume deaths from diarrhea are proportional to incidence and that

households value only the reduction in mortality risk, not the reduced morbidity, we can

compute the value of a statistical life using a ratio of mortality to incidence of one death

per 3,216 cases of diarrhea in children under five, estimated for Ghana in 2010 (Global

Burden of Disease Collaborative Network, 2017). The resulting median VSL is GHS 5,081

(USD 3,604). Again assuming that the reduction in DALYs is proportional to the reduction

in incidence, we can apply a ratio of one DALY for each 35.3 cases of children’s diarrhea

21See Appendix G for details on these calculations.
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(Global Burden of Disease Collaborative Network, 2017) to calculate a median value of

a DALY of GHS 55.77 (USD 39.56). Similar to the findings of Kremer et al. (2011), this is

well below the typical cost effectiveness thresholds described in the previous subsection.

In the second scenario, we use both the short-term and one-year effects and compute

the total effect of the filter over the first year as if the effect changed smoothly over the

course of the year. We again assume the short-term effects are constant and impose a

linear functional form with respect to the WTP on the one-year effects. Figure 5b plots the

distribution of these estimates. The most striking feature of the graph is the large share

of households with negative WTP to avoid children’s diarrhea: the median WTP is GHS

-0.20 (USD -0.14). Mechanically, this occurs because the average of the one-month and

one-year treatment effects are negative for just over half of the population even though

they exhibit positive WTP.

It is unlikely that households have a negative WTP for children’s health. We posit

two key explanations for this result related to Section 4.5’s discussion of compensatory

behavior. First, households may have misperceived the benefits of maintaining the filter

or using it regularly. Improper use or a failure to re-optimize compensatory behaviors

over time could produce negative long-run treatment effects. If a household failed to

foresee these actions, it might pay a positive amount for these negative treatment effects

even if it valued health, and we would estimate a negative value for health. Second, as

in Kremer et al. (2011), the calculations above are based on the assumption that the filter

produces a single good: children’s health. In fact, the filter produces multiple goods, for

example, adults’ health and better tasting water, that may also be valued by the house-

hold. A household’s total WTP for the filter is the sum of its value for all of these goods.

As discussed further in Appendix H, this bundling can explain why a household might

rationally be willing to pay for the filter despite a negative impact on children’s health.

While our empirical setting does not allow us to precisely identify the individual com-

ponents of a household’s valuation for the filter, by simply comparing valuations from
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households with and without children under age five we estimate that the valuation of the

other goods produced by the filter could represent as much as 83 percent of total WTP.22

Incorporating this information in our estimates of the WTP to avoid a case of children’s

diarrhea would eliminate many of the negative valuations implied by the longer-term

impacts.23 These households may be willing to accept a reduction in children’s health in

exchange for the bundle of goods the filter provides. This highlights both the challenge

and importance of constructing accurate WTP measures for health and environmental

goods in developing countries.

6 Comparing Mechanisms

In addition to using BDM to conduct analyses of demand for the filter and its benefits, we

designed our study to compare demand elicited under BDM and TIOLI. While BDM pro-

duces more precise information than TIOLI offers at randomized prices, this benefit may

be mitigated by its complexity. Furthermore, although bidding one’s true maximum WTP

is the dominant BDM strategy for expected utility maximizers, this does not necessarily

hold for non-expected utility maximizers (Karni and Safra 1987; Horowitz 2006).

There is an extensive literature in experimental economics studying the behavior of

BDM among subjects in laboratory settings. It raises several issues. Several papers find

that BDM-elicited valuations can be sensitive to the distribution of prices (Bohm et al.

1997; Mazar et al. 2014). Cason and Plott (2014) show that subjects’ misunderstanding of

the best response can also influence the WTP elicited by BDM. In addition, several studies

explicitly compare BDM with other incentive-compatible elicitation mechanisms and find

differences in elicited WTP (Rutstram 1998; Shogren et al. 2001; Noussair et al. 2004).

22Average WTP for households with no children under 5 is GHS 2.67, while average WTP for households
with children under 5 is 3.22. Other goods produced by the filter could include adult health, taste of the
water, or prestige of owning the filter. We lack the data to examine these components directly.

23Assigning a value to other goods produced by the filter would also reduce the mean and median
estimates based on our short-term treatment effects.
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In spite of the large laboratory literature on BDM, little is known about its performance

in field settings. We therefore designed our study to allow direct comparison of the de-

mand estimates from BDM and TIOLI and to investigate the causes of any differences.

Although both mechanisms are research tools and may not map directly to typical mar-

ket interactions, TIOLI offers at randomized prices are common in applied research. They

provide a useful benchmark for the signal contained in BDM offers. We present what is,

to our knowledge, the first direct comparison of BDM and TIOLI in a developing-country

field setting with the aim of better understanding the suitability of BDM for extracting

additional information from field experiments.24

We organize the analysis comparing BDM and TIOLI as follows. Section 6.1 compares

the demand estimates and out-of-sample predictive accuracy of both mechanisms. The

BDM-based demand model has similar accuracy in predicting out-of-sample TIOLI deci-

sions as the TIOLI model itself, indicating that the BDM bids contain substantial signal.

As is common in the consumer behavior literature, there is substantial unobserved het-

erogeneity in demand estimates using either mechanism, which underscores the utility

of measuring demand directly. Section 6.2 tests several potential explanations for the

BDM-TIOLI demand gap. Our main finding is that the gap is largest among the most

risk-averse subjects and negligible for the most risk tolerant.

6.1 Comparing Demand Estimates and Predictive Accuracy

This section compares the correlates of demand obtained using each mechanism as well

as the accuracy of each mechanism for predicting out-of-sample purchase behavior. In ad-

dition to providing a point of comparison between mechanisms, understanding the rela-

tionship between household characteristics and WTP can be directly useful by informing

how pricing policies target particular types of households. Previous studies have found

24Subsequent to our study, Cole et al. (2016) study demand for weather insurance and an agricultural
information service in India using BDM and TIOLI. They find that BDM-measured demand is similar to
that of TIOLI on average, although the relationship depends on the product offered.
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limited evidence that WTP for health goods in low-income countries is related to health

characteristics or wealth (Ashraf, Berry and Shapiro 2010; Cohen and Dupas 2010), reflect-

ing a common finding in the consumer behavior literature: choice is often only weakly

correlated with standard consumer attributes (Nevo 2011). This makes predicting indi-

vidual purchase behavior difficult and underscores the usefulness of direct measurement

of WTP.

We model the relationship between WTP and characteristics as

WTPic = α0 + X
′
icβ + εic, (7)

where Xic is a vector of characteristics for subject i in compound c, and εic is an error term.

In our BDM sample, we observe WTP directly and can estimate Equation (7) via

ordinary-least-squares. Columns 1 and 2 of Table 3 present these results. The BDM bid is

positively related to the number of children aged five and under with diarrhea, a result

significant at the 10 percent level. One additional child with diarrhea in the household

(conditional on the total number of children), is associated with an increase of GHS 0.55

in the BDM bid. The BDM bid is also positively related to durables ownership and ed-

ucation, although the latter is not significant. These relationships are consistent with

hypotheses from the pricing literature. However, we note that, also consistent with that

literature, the estimates are generally imprecise. Household characteristics explain very

little of the variation in WTP. Moreover, as shown in Column 2, the best predictor of WTP

for the filter is a household’s WTP for soap, a related health product. When we control for

a household’s bid for soap in the BDM practice rounds, the share of variation explained

by the model increases from 0.053 to 0.214.

For TIOLI subjects, WTP is an unobserved latent variable, so we estimate (7) indirectly

using a discrete choice model:

buyi,p = 1 {WTPi ≥ pi} = 1 {WTPi − pi ≥ 0} = 1
{

α0 + X
′
icβ + εic − pi ≥ 0

}
(8)
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where buyi,p is an indicator equal to 1 if respondent i agreed to buy when assigned price

pi. We estimate (8) on TIOLI subjects by probit. In the estimation, we normalize the

coefficient on price (in GHS) to−1, so the estimated coefficients β are interpreted in terms

of GHS and are comparable to those obtained by estimating Equation (7) directly with

BDM subjects. Columns 3 and 4 of Table 3 presents these results.25

When we compare the correlates of demand using each mechanism (Column 5 of Ta-

ble 3), there are a few significant differences between the estimates for BDM and TIOLI.

In several key cases, the BDM coefficient conforms more closely to hypothesized mech-

anisms from the literature and to our prior beliefs. For example, respondents that are

more educated tend to express a higher WTP under BDM but are significantly less likely

to accept a TIOLI offer at a given price. That said, and consistent with the aforemen-

tioned consumer behavior literature, much of the heterogeneity across subjects remains

unexplained. For both mechanisms, a household’s purchase decision for soap are more

predictive of filter demand than the set of all other household characteristics combined.

Because both the filter and soap are health products, this result suggests that a house-

hold’s unobserved demand for health is a strong determinant of WTP for both goods.

Appendix I.1 describes the results of applying LASSO regression to determine the most

relevant attributes to predict filter demand. Here too the WTP for soap in the practice

round is the dominant feature predicting filter demand.

An alternative method of evaluating BDM is to analyze the extent to which it can

predict non-BDM purchase behavior. We therefore compare both mechanisms on their

ability to predict out-of-sample TIOLI decisions. Appendix I.2 details the procedure and

provides additional results. In summary, we split each of the BDM and TIOLI samples

into 10 roughly equally-sized parts or folds. For each fold k in the TIOLI sample, we use

the remaining k− 1 folds in each of the BDM and TIOLI samples to predict purchase be-

havior in the kth, holdout, fold. We then calculate prediction error for each model and

25Bivarate regressions of BDM bid or TIOLI purchase on each variable separately yield broadly similar
results (not shown).
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combine the estimates of the 10 folds. BDM and TIOLI correctly predict TIOLI behavior

in the holdout samples correctly in 76.0 percent and 73.9 percent of observations, respec-

tively, relative to a base rate of 56.2 percent. While additional work is required to link

behavior under either mechanism to actual market purchase behavior, in this setting the

predictive ability of BDM for TIOLI behavior is comparable to that of TIOLI itself.

6.2 Mechanism Effects

As shown in Figure 1a, demand is lower under BDM than TIOLI at each of the three

TIOLI price points. This gap is 18.2 percentage points at a price of 2 GHS (p = 0.000), 16.3

percentage points at 4 GHS (p = 0.002), and 10.0 percentage points at 6 GHS (p = 0.012).26

The adjustment to BDM bids that minimizes the differences in demand at the three TIOLI

price points is approximately GHS 1. Under the assumption that TIOLI reflects true WTP,

this implies a BDM “mechanism effect” of GHS 1. In this sub-section, we investigate

potential explanations for this gap.

First, we examine the relationship between the BDM-TIOLI gap and risk aversion.

Theory predicts no gap in elicited WTP between BDM and TIOLI when agents are ex-

pected utility (EU) maximizers. In our setting, there are multiple likely sources for de-

viations from EU maximization including loss aversion, ambiguity aversion, and non-

standard beliefs about probability. Based on survey responses to questions on hypothet-

ical gambles, 30.4% of our subjects exhibit loss aversion, 41.6% exhibit some degree of

ambiguity aversion, and 64.6% at least one of these two. The theoretical literature on the

BDM mechanism finds that, among non-EU maximizers, the optimal BDM bid can dif-

fer from the TIOLI reservation price, and this difference is likely to be increasing in risk

aversion (Safra et al. 1990; Keller et al. 1993).

To test this hypothesis, in the one-year followup villages we collected standard survey

measures of risk aversion using stated-preference responses to hypothetical gambles. (See

26See Appendix J.1 for full presentation of these results.
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Appendix B for detail.) We then divide the sample into terciles by risk aversion and

estimate the gap separately for each tercile. As predicted by theory, risk aversion appears

to be an important determinant of the mechanism effect: the gap is largest BDM-TIOLI

gap is largest among the most risk-averse subjects (mean BDM effect −0.200, p = 0.000)

and has largely closed among the least risk-averse subjects (mean BDM effect −0.051,

p = 0.425). See Appendix J.2 for details on these tests and robustness checks.

Second, we examine how BDM-TIOLI gap differs with respect to other household ob-

servables, with the caveat that this is ex post hypothesizing rather than guided by theory.

Here, we highlight the most interesting findings; we present the methods and full set of

results in Appendix J.3. The mean BDM-TIOLI gap is 13.8 percentage points narrower for

subjects with a child age 0 to 5 than for subjects without (p = 0.002). Furthermore, within

the set of subjects with children age 0 to 5, the gap is 14.2 percentage points narrower if the

subject reported a case of diarrhea among her young children in the previous two weeks

(p = 0.015). In fact, among this latter group, the BDM-TIOLI gap is negligible (point

estimate −0.009 , standard error of estimate 0.052, p = 0.865). This suggests that respon-

dents with more at stake may have taken the exercise more seriously.27 These estimates

are from single comparisons but are similar when testing multiple possible determinants

of the BDM-TIOLI gap jointly (see Tables A9 and A10, with discussion in Appendix J.3).

Third, based on our piloting, we tested two hypotheses for reasons underlying a po-

tential BDM-TIOLI gap: (a) that the TIOLI price offer could serve as an anchor; and (b)

that subjects might be generally uncomfortable with the randomness involved in BDM.

We included several variations of our basic BDM and TIOLI procedures as experimental

sub-treatments designed to test these hypotheses. We found little evidence in support of

our hypotheses from these sub-treatments. We provide details on the sub-treatments and

analysis in Appendix J.4.

27In the language of Harrison (1992), these subjects may perceive their payoff functions to be steeper
below their optimum bid, and so face a greater possible penalty for a bid that does not equal their true
maximum WTP.
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Fourth, evidence is not consistent with the gap being driven by lack of familiarity

with the filter or by uncertainty about its benefits. As shown in Appendix J.5, we observe

a BDM-TIOLI gap in demand for soap, a familiar product, during the practice rounds.

Finally, ex post regret – BDM subjects regretting their bid after the draw was realized

– could be responsible for the BDM-TIOLI gap. This could arise from either misunder-

standing the mechanism or non-EU preferences in which the resolution of uncertainty

increases one’s reference point. Immediately after the BDM price draw, we asked losing

respondents if they wished they had bid more. A substantial share, 19.2 percent, said

that they did, and Appendix J.6 explores this as a potential explanation of the differences

between BDM and TIOLI. We note, however, that a comparable share of TIOLI subjects,

17.0 percent, attempted to bargain with surveyors even though the script emphasized

there would be no bargaining.

7 Conclusion

This paper has demonstrated the use of the BDM mechanism to elicit willingness to pay

for and estimate impacts of point-of-use water technology in rural Northern Ghana. We

find that WTP for the filter is low, corresponding to less than 15 percent of the cost of

production. Under the standard set of neoclassical assumptions, including full informa-

tion, complete markets, and an efficient household, this low WTP implies that the effect

of the filter on household welfare is low as well. The presence of selection on gains, i.e.,

the observed positive relationship between WTP and benefits, provides some support for

the view that WTP reflects welfare. On the other hand, market failures may provide a

rationale for subsidies, as is often assumed for health products in these contexts.

Although average WTP is low, our estimates imply that a small positive price would

not dramatically reduce coverage. In fact, it would improve outcomes by screening out

those for whom long-term treatment effects were negative. Combining WTP and treat-
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ment effects yields a low implied valuation for children’s health: less than USD 40 per

DALY and a VSL on the order of USD 3,600. Consistent with Kremer et al. (2011) in

Kenya, the implied valuation is far below those typically used by public health planners

or estimated in higher income countries (Viscusi and Aldy 2003).

We also show that behavior matters: the filter’s benefits decrease over time and be-

come negative for households exerting low effort. Even a technically sound product can

have its effects blunted by slippage in consistency or quality of use, and policymakers

should not underestimate the importance of costly effort. One direction to pursue is to

invest in understanding user behavior and sustaining behavioral change. A second is to

develop products that are less dependent on correct use or impose lower effort costs.

As we demonstrate, embedding BDM in field experiments can also provide insights

into how use and treatment effects vary with WTP. There are numerous potential applica-

tions. In sectors where heterogeneity in returns is particularly important, such as microfi-

nance (Meager 2018) or agriculture (Jack 2011), incorporating BDM into field experiments

could enhance our understanding of such heterogeneity. In other contexts, researchers

have already used incentive-compatible WTP elicitation within field experiments, and

future experiments could combine BDM and treatment effect estimation to provide ad-

ditional information for policy. Examples include other health products (Meridith et al.

2013), sanitation (BenYishay et al. 2017), electrification (Lee et al. 2016), and insurance

(Cole et al. 2014).28 For researchers interested in using BDM in the field, Appendix K

discusses some of the practical tradeoffs between BDM and TIOLI.

However, the added information provided by BDM comes with the cost of added com-

plexity. Most experimental mechanisms to recover valuations differ from normal market

interactions, but BDM can seem particularly unusual. While the predictive power of BDM

estimates for TIOLI behavior is comparable to that of TIOLI itself, demand under BDM is

systematically lower than TIOLI at each of the TIOLI price points, particularly among the

28Within the larger set of studies eliciting WTP within field experiments, several have used BDM (e.g.,
Hoffmann 2009; Cole et al. 2014; Guiteras et al. 2016; Grimm et al. 2017; BenYishay et al. 2017).
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most risk-averse households.

Further research on understanding the performance of BDM in field settings would be

highly valuable. Our results suggest at least two useful directions. The first follows from

the finding that the BDM-TIOLI gap was close to zero among subjects with lowest risk

aversion. This suggests exploring ways to frame BDM to reduce the salience of random-

ness and further emphasize the dominance of bidding one’s true maximum WTP (Cason

and Plott 2014). The additional confirmation steps we added were an attempt to move in

this direction, creating explicit choices similar to a multiple price list exercise (Andersen

et al. 2006) in the neighborhood of subjects’ initial BDM bids. Further work aimed at get-

ting subjects to focus less on the randomization and more on how they value a product

relative to a fixed sum of money would be valuable.

Second, in our exploratory analysis we found that the BDM-TIOLI gap was smaller

for subjects with children aged five or under, and smaller still for those who reported

that a child aged five or under had a case of diarrhea in the previous two weeks. We

speculate that these subjects may have perceived that they had more at stake and taken

the BDM task more seriously, thinking more carefully about their true maximum WTP.

This suggests further investigation of how carefully subjects consider the BDM exercise

and how best to frame BDM to increase subjects’ engagement. Of course, these factors

are likely to be context- and product-specific, so there may not be general answers. We

expect that iteration between the field and the lab will be useful in understanding in un-

derstanding how subjects form their bids and how different aspects of the BDM protocol

may influence behavior.
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Table 1: Sample Composition and Descriptive Statistics

Mean Diff. Regressions

Full Sample BDM TIOLI BDM-TIOLI BDM Draw TIOLI Price
(1) (2) (3) (4) (5) (6)

Number of respondents in compound 3.593 3.305 3.859 -0.554∗ 0.236∗∗∗ -0.051
(census) [2.323] [1.816] [2.683] (0.323) (0.079) (0.045)

Husband lives in compound 0.794 0.792 0.796 -0.004 0.453 -0.243
[0.404] [0.406] [0.403] (0.022) (0.367) (0.168)

Number of children age 0-5 in 1.135 1.069 1.196 -0.127∗ 0.195 0.028
household [0.978] [0.941] [1.008] (0.073) (0.159) (0.078)

Number of children age 6-17 in 1.303 1.389 1.224 0.165∗∗ 0.028 -0.013
household [1.282] [1.304] [1.258] (0.084) (0.129) (0.047)

Number of children age 0-5 with 0.243 0.208 0.277 -0.069∗ -0.372 0.075
diarrhea in past two weeks [0.525] [0.487] [0.557] (0.035) (0.376) (0.128)

Number of children age 6-17 with 0.049 0.050 0.048 0.002 -0.499 0.463∗

diarrhea in past two weeks [0.272] [0.302] [0.241] (0.016) (0.417) (0.267)

Respondent has ever attended 0.090 0.079 0.100 -0.021 -0.025 -0.077
school [0.286] [0.270] [0.301] (0.016) (0.515) (0.195)

First principal component of 0.132 0.059 0.198 -0.139 -0.046 0.005
durables ownership [1.555] [1.512] [1.592] (0.126) (0.091) (0.056)

All-year access to improved water 0.187 0.196 0.179 0.017 -0.126 0.119
source [0.390] [0.397] [0.384] (0.038) (0.376) (0.252)

Currently treats water 0.115 0.109 0.120 -0.011 0.567 0.048
[0.319] [0.312] [0.325] (0.024) (0.468) (0.257)

E. coli count, standardized -0.052 -0.026 -0.076 0.050 -0.102 0.038
[0.949] [1.012] [0.887] (0.089) (0.162) (0.120)

Turbidity, standardized -0.065 -0.099 -0.032 -0.068 -0.008 0.224∗∗∗

[0.997] [0.922] [1.063] (0.096) (0.178) (0.081)

BDM Filter Bid (GHS) −0.093
(0.062)

Number of households 1265 607 658 607 658
Number of compounds 558 275 283 275 283

Notes: Columns 1, 2 and 3 display sample means in the full sample, BDM treatment and TIOLI treatment,
respectively. Column 4 displays the differences in means betweenthe BDM and TIOLI treatments. Column
5 displays the results of a regression of BDM draw on the listed characteristics. Column 6 displays the
results of a regression of TIOLI price on the listed characteristics. Missing values of independent variables
in Columns 5 and 6 are set to 0, and dummy variables are included to indicate missing values. Standard
deviations in brackets. “Currently treats water”refers to boiling or use of a microbiologically effective filter.
Standard errors clustered at the compound (extended family) level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 2: Constant-Effects Instrumental Variables Estimates

Combined all subjects TIOLI subjects BDM subjects

(1) (2) (3) (4) (5) (6)

A. One-month followup

A.1 Structural Equation – Dependent variable: Child age 0 to 5 has had diarrhea over previous two weeks
Bought Filter -0.065∗ -0.072∗∗ -0.100∗ -0.098∗ -0.049 -0.058

(0.037) (0.035) (0.054) (0.051) (0.050) (0.043)
Mean dependent variable 0.145 0.145 0.149 0.149 0.142 0.142

A.2 First Stage – Dependent variable: Household Purchased Filter
Randomized offer price (GHS) -0.109∗∗∗ -0.107∗∗∗ -0.178∗∗∗ -0.172∗∗∗ -0.093∗∗∗ -0.093∗∗∗

(0.004) (0.004) (0.013) (0.013) (0.004) (0.005)
F-stat 655.6 591.4 202.4 185.4 571.4 424.1

Number of compounds 472 472 244 244 229 229
Number of households 786 786 418 418 368 368
Number of children 1244 1244 665 665 579 579

B. One-year followup

B.1 Structural Equation – Dependent variable: Child age 0 to 5 has had diarrhea over previous two weeks
Bought Filter 0.093 0.121∗ 0.148 0.220∗∗ 0.090 0.108

(0.070) (0.071) (0.099) (0.100) (0.089) (0.090)
Mean dependent variable 0.241 0.241 0.215 0.215 0.262 0.262

B.2 First Stage – Dependent variable: Household Purchased Filter
Randomized offer price (GHS) -0.109∗∗∗ -0.105∗∗∗ -0.184∗∗∗ -0.174∗∗∗ -0.094∗∗∗ -0.091∗∗∗

(0.006) (0.007) (0.017) (0.020) (0.006) (0.007)
F-stat 305.9 244.0 116.2 72.3 252.6 195.0

Number of compounds 247 247 121 121 126 126
Number of subjects 387 387 197 197 190 190
Number of children 539 539 266 266 273 273

Controls No Yes No Yes No Yes
Village FEs No Yes No Yes No Yes

Notes: Each column in A.1 and B.1 displays the results of a linear two-stage least squares regression of child
diarrhea status at the child level on filter purchase, where filter purchase is instrumented by random BDM draw
for BDM subjects and by randomly assigned TIOLI price for TIOLI subjects. Each column in A.2 and B.2 displays
the results of a linear probability model first-stage regression, where the dependent variable is an indicator for
whether the household purchased a filter and the independent variable of interest is a randomized price, and the
instruments are as in A.1 and B.1. Controls include all variables (other than BDM bid) listed in Table 1. Standard
errors clustered at the compound (extended family) level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3: Correlates of Willingness to Pay

BDM TIOLI

OLS Probit Diff. (2)-(4)
(1) (2) (3) (4) (5)

Number of respondents in compound 0.053 0.085 −0.089∗∗∗ −0.117∗∗∗ 0.203∗∗∗

(0.061) (0.059) (0.034) (0.035) (0.068)
Husband lives in compound −0.005 0.157 −0.463∗ −0.471∗∗ 0.629∗∗

(0.249) (0.220) (0.244) (0.233) (0.318)
Number of children age 0-5 in household 0.067 0.098 −0.066 −0.053 0.151

(0.114) (0.098) (0.092) (0.093) (0.134)
Number of children age 6-17 in household 0.018 −0.013 0.197∗∗ 0.172∗∗ −0.185∗

(0.068) (0.064) (0.080) (0.080) (0.102)
Number of children age 0-5 with diarrhea in past two weeks 0.550∗ 0.387 −0.260 −0.284 0.671∗∗

(0.290) (0.266) (0.170) (0.175) (0.315)
Number of children age 6-17 with diarrhea in past two weeks −0.187 −0.210 −0.663∗ −0.592∗ 0.382

(0.223) (0.228) (0.355) (0.343) (0.409)
Respondent has ever attended school 0.604 0.556 −0.535∗∗ −0.542∗∗ 1.098∗∗

(0.418) (0.410) (0.236) (0.239) (0.470)
First principal component of durables ownership 0.128∗ 0.011 0.099 0.102 −0.092

(0.075) (0.066) (0.072) (0.068) (0.094)
All-year access to improved water source −0.307 −0.074 −0.259 −0.220 0.146

(0.253) (0.231) (0.265) (0.257) (0.344)
Currently treats water 0.560 0.526 0.246 0.076 0.451

(0.378) (0.344) (0.270) (0.274) (0.435)
E. coli count, standardized −0.123 −0.180∗ 0.134 0.088 −0.269

(0.111) (0.103) (0.161) (0.166) (0.194)
Turbidity, standardized −0.190∗∗ −0.217∗∗ 0.076 0.042 −0.259∗

(0.087) (0.089) (0.123) (0.117) (0.146)
BDM Soap Bid (GHS) 3.527∗∗∗

(0.579)
Purchased soap 1.195∗∗∗

(0.261)
R-squared 0.053 0.214
Log-likelihood -347.1 -321.2
Number of households 607 607 657 656
Number of compounds 275 275 283 282

Notes: Columns (1) and (2) display coefficients from a linear regression of directly reported willingness to
pay (the BDM bid) on baseline characteristics. Columns (3) and (4) report coefficients from probit models,
where the dependent variable is the TIOLI purchase decision. As discussed in the text, by restricting the
coefficient on price to equal −1 in the probit estimation, the estimated coefficients can be interpreted in
terms of willingness to pay and are comparable to the OLS estimates from the BDM subjects. Missing values
of the independent variables are set to 0, and dummy variables are included to indicate missing values.
Column (5) reports differences in the estimated coefficients between BDM (Column (2)) and TIOLI (Column
(4)), with standard errors calculated via SUR. Standard errors clustered at the compound (extended family)
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 1: Demand and Price Elasticity

(a) Inverse Demand Curve
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(b) Price Elasticity of Demand
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Notes: The top panel plots the BDM demand curve, with a 90% confidence band, and take-it-or-leave-it (TIOLI)
demand at three price points (2, 4 and 6 GHS), with 90% confidence intervals. The BDM demand curve indicates
the share of respondents with a BDM filter bid greater than or equal to the indicated price. The TIOLI markers
indicate the share of respondents who purchased the filter at the corresponding (random) price. Point-wise in-
ference from logit regressions (at prices GHS 1, 2, . . . , 10 for BDM, 2, 4, 6 for TIOLI). Standard errors clustered at
the compound (extended family) level. 607 BDM observations. 658 TIOLI observations, of which 246 at a price
of 2, 224 at a price of 4, and 188 at a price of 6. The bottom panel plots demand elasticities among BDM and
TIOLI respondents. The BDM elasticity is calculated by a local polynomial regression, using an oversmoothed
Epanechnikov kernel. The TIOLI elasticity is an arc elasticity calculated between GHS 0-2, 2-4 and 4-6 and plotted
at the midpoint of each segment (GHS 1, 3 and 5, respectively). For both BDM and TIOLI, demand at a price of
zero is is assumed to be 1.
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Figure 2: Kernel IV Estimates of Treatment Effects
First Stage Regression

(a) Short-term: One-Month Follow-Up
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(b) Long-term: One-Year Follow-Up
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Notes: The solid line (left axis) plots the estimated coefficient on the price draw from the first-stage regression
at each evaluation point WTP = 1.0, 1.1, . . . , 6.0 (GHS). The dashed line (right axis) plots the F-statistic on the
excluded instrument (the BDM price draw) in the first-stage regression at each evaluation point.
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Figure 3: Kernel IV Estimates of Treatment Effects

(a) Short-term: One-Month Follow-Up
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(b) Long-term: One-Year Follow-Up
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Notes: These graphs present estimated treatment effects (reduction in diarrhea among children age 0 to 5) as a
function of willingness-to-pay (WTP). Estimates are by linear two-stage least squares at WTP = 1.0, 1.1, . . . , 6.0,
weighting observations by their distance from the evaluation point (Epanechnikov kernel, bandwidth by Silver-
man’s rule of thumb). The endogenous treatment variable is an indicator for whether the household purchased a
filter, and the exogenous instrument is the household’s BDM draw. Standard errors are clustered at the compound
(extended family) level. See Section 4.3 for details, and Figures 2 and A4 for first-stage results and for ancillary
statistics.
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Figure 4: Relationship between Use and Willingness to Pay
BDM Purchasers with Children 0 to 5

(a) One-Month Follow Up
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(b) One-Year Follow Up
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Notes: These figures show predicted values from a kernel regression (local polynomial of degree 1) for measures of
use on the household’s willingness-to-pay (WTP), as stated in the BDM sale. The left figures display an indicator
for whether the safe storage container contained water at or above the level of the spigot. The right figures display
an index of use measures comprising indicators for whether the filter was observed in the compound, whether
the ceramic pot contained water, and whether the safe storage container contained water at or above the level of
the spigot. These measures are standardized and combined following Kling et al. (2007). The sample consists of
households that won a filter in the BDM sale and have one or more children age 0 to 5. Confidence intervals robust
to clustering at the compound (extended family) level are computed by bootstrapping, resampling compounds
with replacement (1,000 repetitions).
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Figure 5: WTP to Avoid a Case of Children’s Diarrhea

(a) One-Month Treatment Effect
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(b) Average Treatment Effect over One Year
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Notes: These figures present distributions of the WTP to avoid a case of diarrhea based on BDM bids and the
treatment effects estimated in Section 4. In the top panel, short-term impacts on diarrhea are assumed to be
constant and last for one year. The bottom panel assumes the average of short- and long-term impacts last for one
year. In the bottom panel, the short-term impacts are constant and the long-term impacts are linear in willingness-
to-pay.
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A BDM Script 
 
Section numbers refer to survey instrument. For full text of all sales treatments, see the 
Supplemental Materials. 
 
J. REGULAR_BDM 
 
READ EXACTLY FROM SCRIPT.  DO NOT SAY ANYTHING THAT IS NOT IN 
SCRIPT. 
 
READ: 

 
- We would like to sell you a filter but the price is not yet fixed. It will be determined 

by chance in a game we are about to play. 
 

- You will not have to spend any more for the filter than you really want to. 
 

- You may even be able to buy it for less.  
 
Here is how the promotion works: 

 
- I will ask you to tell me the maximum price (dan kuli) you are willing to pay (ka a ni 

sagi dali) for the Kosim filter (koterigu di mali lokorigu). 
 

- In this cup, I have many different balls with different numbers on them.  
 

- The numbers represent prices for the filter.  
 

- Then I will ask you to pick a ball from the cup, and we will look at the price together. 
 

- If the number you pick is less than or equal to your bid, you will buy (ani too dali) the 
filter and you will pay the price you pick from the cup. 
 

- If the number you pick is greater than your bid, then you cannot buy the filter. 
 

- You will only have one chance to play for the filter. 
 

- You cannot change your bid after you draw from the cup. 
 

- You must state a price that you are actually able to pay now. 
 

- We will practice in one moment, but for now, do you have any questions? 
 
Answer any questions respondent has. 
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J.1 REGULAR_BDM PRACTICE 
 
REMEMBER: Get respondent to state HIGHEST price they are WILLING AND ABLE to 
pay right now. 
 
NOTE: Refer to p.23 for correct Dagbani translation of Cedi amounts. 
 

- Before we play for the filter, let’s practice the game. We’ll play the same game, but 
instead of playing for the filter, we will play for this bar of soap. Show respondent 
soap. 
 

1) What is the maximum amount (dan kuli) that you are willing to pay for this soap? 
[Respondent states price X] 
 

2) Now, if you pick a number that is less than or equal to X, you will buy the soap at the 
price you pick. If you pick a number greater than X, you will not be able to purchase 
the soap, even if you are willing to pay the greater number. You cannot change your 
bid after you pick a price. Do you understand? 

3) Please, tell me - if you pick [X+5 peswas] now, what happens? If respondent does 
not give correct answer, explain the rules again and then ask question again. 
 

4) And if you pick [X-5 peswas] now, what happens? If respondent does not give 
correct answer, explain the rules again and then ask question again. 
 

5) If you draw [X+5], will you want to purchase the soap for [X+5]? 
IF YES:  5) 
IF NO:  6) 

 
6) Do you want to change your bid to [X+5]? 

IF YES: OK, your new bid is [X+5].  2) [use X+5 as new X]   
IF NO:  6) 

7) So, is X truly the most you would want to pay? 
IF YES:  7) 
IF NO:  1) 

 
8) If you pick X, you must be able to pay X. Are you able to pay X now? 

IF YES:  J.1.1 
IF NO: What is the maximum price you are willing and able to pay now?  

2) [use new X] 
 

  Record respondent’s Final Bid (J.1.1, page 29) 
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9) Could you please fetch the amount you have stated you are willing to pay and show it 
to me? 
Wait for respondent to fetch money and check to see she has enough funds for 
Final Bid. 
 

10)  Now you will pick a price from the cup. If you pick X or less, you will buy the soap 
at the price you pick. If you pick more than X, you will not be able to buy the soap. 
Are you ready to pick a ball? 
 

Mix balls in cup, hold cup above eye level of respondent and have her pick a ball 
without looking. 

 
11) Now you can draw a ball from the cup. Let respondent draw ball. Together, look at 

the ball and read the price picked. [Drawn price is Y] 
 
  Record Drawn Price (J.1.2, page 29)  

 
12) Let us look at the ball together. 

  Record if Drawn Price is lower/equal to or higher than Final Bid Survey (J.1.3, page 
29)  

 
a.  [If Y <= X]: The price is Y which is [less than/equal to] the amount you said 

you would be willing and able to pay for this soap.  You can now buy the item 
at this price. 

 
  Exchange payment for soap. 
 

b. [If Y > X]: The price is Y, which is greater than the amount you said you 
would be willing to spend.  You cannot purchase the soap. 
 

 
13) Do you have any questions about the game? 

 
Address any questions or concerns respondent has. Make sure she understands rules of 
game.  
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J.2 REGULAR_BDM FILTER SALE 
 
REMEMBER: Get respondent to state HIGHEST price they are WILLING AND ABLE to 
pay right now. 
 
NOTE: Refer to p.23 for correct Dagbani translation of Cedi amounts. 
 
Read: 

- Now you will play to buy the filter  
- Recall the community meeting on [day of community meeting] 
- Have you thought about how much you are willing to pay for the filter? 
- Do you have the funds available now?  

 
Let’s begin: 

1) What is the maximum amount (dan kuli) that you are willing to pay for this filter? 
[Respondent states price X] 
 

2) Now, if you pick a number that is less than or equal to X, you will buy the soap at the 
price you pick. If you pick a number greater than X, you will not be able to purchase 
the soap, even if you are willing to pay the greater number. You cannot change your 
bid after you pick a price. Do you understand? 

3) Please, tell me - if you pick [X+1 cedis] now, what happens? If respondent does not 
give correct answer, explain the rules again and then ask question again. 
 

4) And if you pick [X-1 cedis] now, what happens? If respondent does not give correct 
answer, explain the rules again and then ask question again. 
 

5) If you draw [X+1], will you want to purchase the filter for [X+1]? 
IF YES:  5) 
IF NO:  6) 

 
6) Do you want to change your bid to [X+1]? 

IF YES: OK, your new bid is [X+1].  2) [use X+1 as new X]   
IF NO:  6) 

7) So, is X truly the most you would want to pay? 
IF YES:  7) 
IF NO:  1) 

 
8) If you pick X, you must be able to pay X. Are you able to pay X now? 

IF YES:  J.2.1 
IF NO: What is the maximum price you are willing and able to pay now?  
               2) [use new X] 
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  Record respondent’s Final Bid (J.2.1, page 29) 
 
9) Could you please fetch the amount you have stated you are willing to pay and show it 

to me? 
Wait for respondent to fetch money and check to see she has enough funds for 
Final Bid. 
  

10) Now you will pick a price from the cup. If you pick X or less, you will buy the filter 
at the price you pick. If you pick more than X, you will not be able to buy the filter. 
Are you ready to pick a ball? 
 

Mix balls in cup, hold cup above eye level of respondent and have her pick a ball 
without looking. 

 
11) Now you can draw a ball from the cup. Let respondent draw ball. Together, look at 

the ball and read the price picked. [Drawn price is Y] 
 
  Record Drawn Price (J.2.2, page 29)  

 
12) Let us look at the ball together. 

   Record if Drawn Price is lower/equal to or higher than Final Bid (J.2.3, page 29)  
 

a. [If Y <= X]: The price is Y which is [less than/equal to] the amount you said 
you would be willing and able to pay for this filter.  You can now buy the 
filter at this price.  
 
Receive payment for filter. Record filter tracking code on survey ( I.2.5, 
page 29). Record filter tracking code on receipt and give it to respondent. 
Inform her of where and when she can pick up the filter. 
 

b.  [If Y > X]: The price is Y, which is greater than the amount you said you 
would be willing to spend.  You cannot purchase the filter. 
 

 
 

Go to Household Survey question J.24, page 29 
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B Measurement of Risk and Ambiguity Aversion

This section provides additional detail on the hypothetical gambles used to measure risk
and ambiguity aversion in the one-year follow-up surveys.

To measure of risk aversion, we presented subjects with a series of choices between (a)
a 50-50 gamble for a gain of 8 GHS and (b) a certain gain of X. The certain gain X began at
0.5 GHS and increased by 0.5 GHS until the subject chose the certain sum over the risky
gamble. We create an integer variable to indicate the switching point and reverse the scale
to yield a measure increasing in risk aversion. For example, for a subject who chose the
certain 0.5 GHS over the risky gamble–the most risk-averse choice–the variable takes on
a value 11, while a switching point of GHS 1 corresponds to a value of 10. The median
switching point was GHS 2, corresponding to an integer value of 8. We then repeated this
exercise in the loss domain, in which we measured the minimum payment at which the
subject would choose a 50-50 gamble for a loss of 8 GHS over a certain payment to the
experimenter. Finally, we conducted the exercise in the gain-loss domain, in which we
measured the minimum sum the subject would be willing to pay to avoid a 50-50 gamble
for winning 4 GHS vs. losing 4 GHS, or, if the subject were risk-loving, how much the
subject would need to be compensated to forgo such a gamble. In our analysis, we use
the first principal component of these three measures, but the results in Section 6.2 are
robust to other methods of combining them.

To measure ambiguity aversion, we presented subjects with a version of the game
posed by Ellsberg (1961). Subjects were presented with one bag that contained 5 black
balls and 5 white balls, and another bag that contained 10 black and white balls in un-
known proportions. The subject would choose the winning color and draw from a bag.
Subjects were asked to choose between the first bag with a payout of 4 GHS and a second
bag with varying payouts. The payout of the second bag started at GHS 0.5 and increased
by 0.5 GHS until the subject chose the second bag. We identify subjects as ambiguity
averse if they required at least 4.5 GHS to choose the second bag. By this measure, 41.6%
percent of subjects are classified as ambiguity averse. We also create an integer measure
of ambiguity aversion that corresponds to point at which the subject chose the second
bag.
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C Attrition

In this section, we discuss attrition from the follow-up surveys. The overall attrition rate
was 12.9 percent in the one-month survey and 9.5 percent in the one-year survey. Table A3
shows that attrition from the one-month survey was fairly well-balanced on assignment
to BDM vs. TIOLI, the BDM bid, the BDM draw, the TIOLI price, and most observable
characteristics. Households that attritted were somewhat more likely to have a young
child than households that were captured (7.9 pp, p < 0.05). In the one-year follow-up,
attrition was again largely balanced on observable variables. Attritted households had
significantly more young children (p < 0.05) and reported more young children having
diarrhea in the two weeks (p < 0.1) prior to the baseline survey. We also find that attritters
in the BDM treatment had lower WTP for the filter than non-attritters (GHS 1.0, p < 0.01).

While attritters in the one-year survey had lower WTP, on average, than non-attritters,
our heterogeneous treatment effects are estimated across the distribution of WTP. The
most relevant test in this case thus whether treatment is correlated with attrition at differ-
ent levels of WTP. To implement this test, we estimate the following equation at different
levels of WTP:

yic = β0 + β1Tic + εic, (9)

In this equation, yic is an indicator for whether subject i in compound c attritted from the
follow-up survey, Tic is an indicator for treatment (subject i’s BDM bid was greater than
her draw). To condition on WTP, we estimate equation (9) using a kernel (local linear)
regression. As in Section 5.2, we estimate at each GHS 0.1 step from GHS 1 to GHS 6,
which correspond approximately to the 0.1 and 0.9 quantiles of WTP in the BDM sample.
We use an Epanechnikov kernel and Silverman’s rule of thumb to choose the bandwidth.
Following our analysis of heterogeneous treatment effects, we restrict the sample to BDM
subjects with one or more children age 0 to 5 in one-year follow-up villages.

The results are plotted in Figure A5. As shown in the figure, there is no significant dif-
ference in attrition between treated (BDM winners) and untreated (BDM losers) once we
condition on WTP. While we cannot test whether attrition is balanced on unobservables,
this null result may mitigate the potential concern regarding the correlation between WTP
and attrition shown in Table A4.
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D Heterogeneous Treatment Effects, Detail

D.1 Heterogeneous Treatment Effects: Theory, Detail

This section provides a more detailed treatment of the theory introduced in Section 4.2
and provides greater detail on the LIV estimator of Heckman et al. (2006).

We begin with the generalized treatment effects model of Equation (3) in the main text:

y = β0 + β1 (w) T + ε. (10)

As in Section 4.2, suppose the product is offered at two random TIOLI prices, Z ∈ {PL, PH}.
If there is differential take-up at the two prices, Pr (T|PL) > Pr (T|PH), then Z is corre-
lated with T, so the instrument is relevant. For the instrument to be valid, it is necessary
that E [Zu] = 0. Expanding u as in Equation (5), we require

E
[
Z
(

β̃1 (w) T + ε
)]

= 0. (11)

As in Section 4.2, we consider levels and gains separately. By randomization,

E [Z (ε)] = 0, (12)

so the instrument solves the problem of selection on levels. However, we must also con-
sider the selection-on-gains term

E [Zu] = E
[
Zβ̃1 (w) T

]
, (13)

which need not be zero. Even though Z is unconditionally random, it may not be inde-
pendent of β̃1 (w) T: since T = 1 {WTP > Z}, if there is a relationship between WTP and
gains then (13) will be nonzero. As a simple example, suppose β̃1 (w) is positively related
to w. Then when Z = pH, the population selecting into treatment will have, on average,
high values of β̃1 (w) relative to the population treated when Z = pL. As discussed by
Heckman et al. (2006), (13) is only zero if (a) there is no heterogeneity in gains (β1 (w) = β1
for all w, or, equivalently,β̃1 (w) = 0 for all w,) or (b) agents either have no information
on β̃1 (w) or, if they do have such information, they cannot or do not act on it.

As described in Section 4.2, rather than estimating either β̄1 or β1(w), IV estimation
using TIOLI estimates:

βIV
1 (PL ≤WTP ≤ PH) =

PHˆ

PL

β1 (w) dFWTP (w) .
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In order to provide estimates of β1(w), one could add more randomized prices P1, . . . , PM,
and, using instrumental variables as above, estimate treatment effects piecewise:

βIV
1 (P1 ≤WTP ≤ P2) , . . . , βIV

1 (PM−1 ≤WTP ≤ PM) .

As in the case of estimating a full demand curve using randomized TIOLI prices, this will
require a relatively large sample.

A second strategy to estimate β1(w) is provided in the marginal treatment effects liter-
ature (Heckman and Vytlacil 2007). Given an instrument Z, the marginal treatment effect,
∆MTE (z), is defined as the treatment effect on those just on the margin of indifference
between being treated or not when the instrument has value z. When Z is a randomized
price, ∆MTE (w) is equivalent to β1 (z), since by definition someone with WTP = z is
indifferent between purchasing and not purchasing at a price of w. Heckman et al. (2006)
show that ∆MTE (w) can be estimated even though WTP is typically not observed. Heck-
man et al. (2006) show that the marginal treatment effect is equal to the local instrumental
variables parameter

∆MTE (w) = ∆LIV (w) =
∂E [y|Pr (z) = Pr]

∂ Pr

∣∣∣∣
w=z

,

where Pr (Z) is the propensity score with respect to the instrument, representing the prob-
ability of treatment among those facing (random) price Z. The marginal treatment effect
at z, then, is the change in the outcome of interest on those brought into treatment by
small changes in Z around z, ∂E [y|Pr (z)] /∂ Pr (z).29 Heckman et al. (2006) provide a lo-
cal instrumental variables estimator, which estimates the propensity score Pr (z) in a first
step and then regresses the outcome of interest on the propensity score. As with the first
strategy, this will require a large sample with a broad range of prices, since the MTE is
only identified on the support of Pr (z), and the precision of the estimate depends on the
precision of the estimated propensity score.30

BDM can estimate β1 (w) with greater precision than these two alternatives. In the
case of piecewise randomized prices, the reason is straightforward – as in the case of
estimating demand curves, each BDM observation provides much more information on

29For intuition, note that this is a differential analogue of the traditional Wald estimator
(E [Y|Z = 1]− E [Y|Z = 0]) / (Pr [T|Z = 1]− Pr [T|Z = 0]) in the case of a binary instrument.

30We focus on price as an instrument for comparability with our application. However, the method
of Heckman et al. (2006) applies more broadly. For example, in their empirical example, they estimate
the effect of high school graduation on wages using mother’s graduation status and number of siblings
as instruments. Note that continuous, many-valued, or multiple instruments will be required to estimate
Pr (z) flexibly. Furthermore, the interpretation of the MTE is more subtle with non-price instruments: what
is estimated is ∆MTE (uD), the effect on those with unobservables uD ∈ [0, 1] such that they are indifferent
between treatment and non-treatment when the value of the instrument Z is z such that Pr (z) = uD. See
Brinch et al. (2017) for progress on estimating MTEs with a discrete instrument and Kowalski (2016) for the
interpretation of MTEs as a function of unobservables.
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WTP than TIOLI. In the case of marginal treatment effects / local instrumental variables,
BDM allows us to observe this dimension of heterogeneity directly, rather than obtaining
it indirectly through the first-step propensity score estimation.

D.2 Comparison with Local Instrumental Variables

In this section, we compare estimated treatment effects using the BDM-IV method with
the Local Instrumental Variables (LIV) methods of Heckman, Urzúa and Vytlacil (2006,
herafter HUV). We compare estimates on the primary outcome of interest in the main text:
long-term (one-year followup) cases of diarrhea among children age five and younger,
based on caretaker recall over the previous two weeks.

In the first LIV step, we estimate the propensity score Pr (z) = Pr [T = 1|Z = z], where
z is the BDM draw. Following HUV, we estimate Pr (z) using locally linear regression. The
estimated propensity score P̂r (z), with a 95 percent confidence band, is plotted in Figure
A6a.

In the second step, we estimate ∂E [y | Pr (z)] /∂ Pr by regressing the outcome y on the
estimated propensity score P̂r (z). For comparability with our BDM-IV estimates, again
we use local linear regression. The results are plotted in Figure A6b. As in the main text,
we have flipped the sign of the dependent variable so benefits (reductions in diarrhea)
correspond to positive point estimates.

Third, by Equation (16) in HUV (pg. 397), this derivative is the treatment effect for
those at the margin of indifference when P̂r (z) = pr. That is, ∂E [y | Pr (z)] /∂ Pr =
E [y1 − y0 | Pr (z) = pr], which, in turn, is equal to ∆MTE (pr).

Fourth, in an “inversion step,” we use the fact that Pr (z) is strictly monotonic (de-
creasing) in z to translate ∆MTE (pr), effects plotted as a function of pr as in Figure A6b,
into ∆MTE (z) = ∆MTE (z : Pr (z) = pr), effects as a function of the price draw z. This
marginal treatment effect, ∆MTE (z), is plotted in Figure A6c. Note that, perhaps coun-
terintuitively, relatively low values of the propensity score in Figure A6b correspond to
relatively high values of the draw in Figure A6c, since the probability of treatment is low
when the draw is high.

Fifth, since z is a price, ∆MTE (z) represents the effect those on the margin of indiffer-
ence at a price of z, and this is exactly β (w), the effect on those with WTP = w. That is, we
can simply re-label the x-axis of Figure A6c as WTP rather than the price draw Z. Com-
paring Figure A6c with Figure 2.b, we observe that the pattern of estimated treatment
effects is similar, in that they are increasing with respect to WTP.

Finally, in Figure A6d we compare the precision of the estimates by plotting the width
of the 95 percent confidence intervals. In the case of LIV, since the regressors in the second
step are estimates from the first step, we bootstrap the entire process, resampling by com-
pound with replacement. The confidence intervals for BDM-IV are narrower over most
of the range of WTP (GHS 1 to 5).
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E Sunk Cost Effects

BDM embeds a double randomization that allows researchers to separately identify two
factors that may be important for understanding the relationship between prices and use:
the causal effect of price paid conditional on WTP (a sunk-cost effect), and the correlation
between WTP and use (a screening effect). In Section 4.4, we analyze screening effects,
showing that there is evidence for a positive association between WTP and use in the
long-term follow-up survey.

Because the price draw is random, we can test for causal effects of price paid by com-
paring measures of use for subjects with the same WTP but who paid different prices. For
example, BDM generates the following experiment: consider three subjects, each willing
to pay GHS 6 for a filter; one doesn’t receive the filter; another pays GHS 6; and the other
pays GHS 2. Thus, at every level of WTP above the minimum price, there is variation in
both allocation and the price paid conditional on allocation.

Following the analysis of WTP and use in Section 4.4, we use three indicators of use:
presence of an undamaged filter, presence of water in the storage reservoir, and presence
of water in the clay pot. We estimate the impact of price paid on each measure separately
and on an index following Kling, Liebman and Katz (2007).

Specifically, we estimate

useic = α0 + α1Dic + α2 f (WTPic) + εic, (14)

where useic represents the use measure, Dic is the respondent’s draw, and f (WTPic) is a
cubic polynomial of bid. It is important to control adequately for WTP since, although the
price draw was unconditionally random, conditional on receiving the filter it is positively
correlated with WTP.

Table A5 presents results from OLS estimation of Equation (14). Panel A shows that
there is little evidence for an effect of the price paid on use in the one-month follow-up.
Panel B shows a similar null result in the one-year follow-up data. Taken together, this
suggests there are no significant sunk-cost effects.
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F Policy Counterfactuals, Detail

This section provides further detail on the policy counterfactuals described in Section 5.1.
As outlined in that section, we consider a social planner who values DALYs at B. The
filter costs CF, inclusive of production, marketing and delivery. For simplicity, we treat
these costs as variable, although in reality there is likely to be a substantial fixed cost at
the village level. We also abstract from time costs of use. The planner chooses the sales
price P. Given a price P, we find QD (P), the share of households purchasing the filter
from our analysis in Sections 3. The total cost of filters is CF ·QD (P), the cost of the filter
times demand.

We compute the reduction in cases of diarrhea per household, given by ∆H(w), under
two assumptions on treatment effects. In the first scenario, we use the treatment effect
β̂1M

1 (w) from the one-month follow-up survey. Since there is little evidence of heteroge-
neous treatment effects in the short run, we restrict β̂1M

1 (w) to be constant with respect to
WTP. Formally, this is given by:

∆1M
H (w) = β̂1M

1 · 26 · nk,

where β̂1M
1 is the average reduction in children’s diarrhea in each 2-week period, which

we estimated in Section 5.2 to be 0.049, and nk is the number of children in the household.
In the second scenario, we take the average of the short-term and one-year effects.

That is, we compute the total effect of the filter over the first year as if the effect changed
smoothly over the course of the year. We again assume the short-term effects are constant
with respect to WTP, and impose a linear functional form on the one-year effects:

∆1Y
H (w) =

((
β̂1M

1 + β̂1Y
1 (w)

)
/2
)
· 26 · nk.

Finally, let FWTP (w) be the CDF of WTP in the population. Since households with WTP ≥
P purchase when the price is P, the reduction in cases of diarrhea when the price is P is
given by

H (P) =
ˆ

w≥P

∆H (w) dFWTP (w) ,

where ∆H(w) is either ∆1M
H (w) or ∆1Y

H (w) depending on the scenario.
Following Kremer et al. (2011), we assume that the gain in DALYs is proportional to

the reduction in cases of diarrhea:

DALY(P) = 0.028 ·H(P),

where 0.028 is the ratio of DALYs to diarrhea incidence for Ghana in 2010 from Global
Burden of Disease Collaborative Network (2017).
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We then compute the average costs per DALY gained as the ratio of the total cost of
filters divided by the total gain in DALYs:

AC (P) =
CF ·QD (P)
DALY (P)

.

where CF equals USD 15, as described in Section 2.
In order to avoid parameterization of the cost function, we compute the marginal cost

per DALY in terms of a discrete price change from P + 0.5. to P − 0.5. This reflects the
cost per DALY of reducing the price from P + 0.5 to P− 0.5:

MC(P) =
CF ·QD (P− 0.5)− CF ·QD (P + 0.5)

DALY(P− 0.5)− DALY(P + 0.5)
.

This function equals the increase in costs resulting from increased demand at a lower
price, divided by the increased DALYs from including the additional households pur-
chasing at the lower price.

Table A6 displays diarrhea cases averted, DALYs averted, and average and marginal
costs per DALY averted under two different assumptions about treatment effects. In Panel
A, we assume constant treatment effects using data from our one-month follow-up sur-
vey. As the price increases (across columns), coverage decreases. Since we have assumed
a constant treatment effect, cases reduced conditional on purchase are constant, and to-
tal cases reduced per household in the population decrease proportionally with demand.
The same holds for DALYs gained conditional on purchase and total DALYs gained per
household in the population. Because the treatment effect is constant, both average and
marginal costs per DALY are also constant at USD 361.

In Panel B, we assume treatment effects are an average of the effects estimated from the
one-month and one-year surveys. The one-month effect is assumed to be constant, while
the one-year effect is assumed to be linear in WTP. Now, as price increases, negative-
gains purchasers – those with low WTP – no longer purchase the filter, and diarrhea cases
reduced conditional on purchase increase. For small positive prices, total gains in the
population increase as well. Above a price of GHS 4, the decrease in coverage outweighs
the increasing gain per household and total gains decline. We see a similar pattern in
DALYs gained, both conditional on purchase (monotonically increasing with price) and
total DALYs gained in the population (increasing, then decreasing, with a maximum at
GHS 4). Because the treatment effect is increasing in WTP, higher prices screen out those
with lower treatment effects, and average and marginal costs per DALY decrease with
price.
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G Valuing Health, Detail

We calculate WTPH, the household’s observed WTP to avoid a case of diarrhea, as w,
the household’s WTP for the filter, divided by ∆d, the number of cases avoided over the
anticipated life of the filter:

WTPH =
w

∆H(w)
. (15)

We obtain the numerator of Equation 15, w, directly from our WTP data. As per the
discussion in Appendix F, we compute the denominator, ∆H(w), under two scenarios
about the filter’s impact on child health. In the first scenario, we assume the one-month
treatment effects β̂1M

1 (w) are constant. That is, the household correctly anticipates the
average benefit, but not necessarily its own benefit.

WTPH =
w

β̂1M
1 · 26 · nk

,

where β̂1M
1 defined as in Appendix F.

In the second scenario, we assume the treatment effects evolve smoothly between the
short-term and one-year effects. We again assume the short-term effects are constant and
that the one-year effects are linear in WTP. A linear functional form for β̂1Y

1 (w) implies
households’ beliefs and valuations are, on average, consistent: households with WTP =
w believe that they will receive a health benefit given by the best linear approximation of
β1Y

1 (w) and, on average, households are correct in this belief. The household’s WTP to
avoid a case of children’s diarrhea, then, is

WTPH =
w((

β̂1M
1 + β̂1Y

1 (w)
)

/2
)
· 26 · nk

.
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H Framework for Compensating Behavior

This section provides additional detail for the discussion of possible mechanisms for the
detrimental long-run impacts of the filter described in Section 4.5. We begin with a sim-
ple model of household health production to frame the issue. Consider a world where
households maximize additively separable utility over children’s health (h) and all other
consumption (x) subject to a budget y. Children’s health is a function of both general
health behavior s, which we label “sanitation” to fix ideas,and the consumption of clean
water (w): h(s, w), where both inputs are continuous and non-negative with unit costs ps
and pw. We make the usual assumptions: hs > 0, hss < 0, hw > 0, and hww < 0. The
household’s maximization problem is then to pick a vector of inputs, (s, w, x), that maxi-
mize utility, h(s, w) + x, subject to the budget constraint, pss + pww + pxx ≤ y.The filter
reduces the per unit cost of clean water, pw. If clean water and sanitation are substitutes
in the health production function, hsw < 0, a reduction in the price of clean water will
reduce sanitation and other investments in children’s health. The substitution between s
and w alone could explain a muted or even zero impact from the filter; however, it could
not generate the perverse effects that we observe.

In Section 4.5, we outline the three factors that we believe are mostly likely to have
combined with compensatory behavior to generate detrimental effects in our context:
sporadic reoptimization in response to gradual declines in use of the filter or the filter’s
effectiveness; intrahousehold allocation decisions that limited children’s access to filtered
water; and non-convexities in the alternative health technologies. Combined with com-
pensatory behavior, each can produce negative treatment effects.

First, upon receipt of the filter – a large shock to their health production function
– households may have reoptimized, engaging in compensatory behavior. Then, in re-
sponse to a gradual decrease in use or the filter’s effectiveness over time, they may have
failed to reoptimize again, either due to rational inattention (Tobin 1982; Reis 2006; Da
et al. 2014) or simple mistakes: households may have misperceived the benefits of main-
taining or using the filter. If households that value the filter more also tend to be more
attentive, we would expect more failures to reoptimize among those with low WTP.

Second, even in households that purchased the filter, some children may not have had
access to the filtered water. The filter produces a limited supply of drinking water, but
this water comprises multiple goods. Most importantly, we consider children’s health
and better tasting water for adults. Before receiving the filter, households made health
investments (such as traveling to cleaner water sources or boiling their water) that jointly
produced both goods. The filter can decouple this production.. With the filter, adults can
obtain better tasting water with less effort devoted to activities that improve water qual-
ity for the entire household. In particular, field reports indicated that some children were
not allowed to drink filtered water because of concerns that they might damage the filter
or that there would be insufficient “sweet tasting water” for the male head of the house-
hold.31 The pattern of treatment effects we observe is consistent with this mechanism.
Households with a low value for children’s health would be less likely to provide filtered

31In response to the field reports, we added survey questions regarding children’s access to filtered
water, but subjects’ answers proved unreliable.



For Online Publication H-16

water for their children and, all else equal, tend to have a lower WTP for the bundle of
goods produced by the filter.

Finally, compensatory behavior can worsen the targeted outcome while improving
utility if the alternative health production technology is non-convex. Many health behav-
iors have a fixed cost component. For example, suppose a household can either obtain its
water at low cost from a dirty source or at ha higher cost from a cleaner source. Without
the filter, the household chooses to incur the higher cost and drink relatively clean water.
The filter improves the quality of the dirty water sufficiently that, if the household has
the filter, it optimally chooses not to incur the cost of obtaining clean water. If filtered wa-
ter with low other investment produces less health than unfiltered water with high other
investment, purchasing the filter can increase utility but reduce health.

Consider a setting in which the individual can (1) either choose to obtain water from
a clean source (cw) or a dirty source (dw) and (2) either use the filter or not. Note that
although we describe this as clean vs. dirty water, this could be any of a set of sanitation
practices. Without the filter, the individual has utility as follows:

UNF = max
{

hcw − ccw, hdw − cdw
}

,

and with the filter, the individual has utility:

UF = max
{

hcw + Fcw − ccw, hdw + Fdw − cdw
}

,

where hs represents the utility of health when water is obtained from source s ∈
{cw, dw}, Fs is the effect of the filter on the utility of water obtained from s, and cs is
the cost of obtaining water from s.

Assumption 1. The clean water is better for your health: hcw > hdw,

and

Assumption 2. The filter works: Fcw > 0; Fdw > 0.

Consider the case where without the filter, individuals use the clean water source:

hcw − ccw > hdw − cdw (16)

Based on the assumption that the filter works, receiving the filter could lead to worse
health if with the filter the individual switches to the dirty water source:

hdw − cdw + Fdw > hcw − ccw + Fcw. (17)
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If health worsens after receiving the filter, this implies:

hcw > hdw + Fdw. (18)

For notational compactness, we define ∆h = hcw − hdw and the analogous variables simi-
larly. Combining the preceding equations implies:

∆c− ∆F > ∆h > Fdw

∆c > Fcw.

That is: (1) the health benefit of clean vs. dirty water needs to be greater than the health
benefit of using the filter with dirty water (thus health goes down if households with the
filter switch to dirty water) and (2) the cost of obtaining clean vs. dirty water needs to
be greater than the health benefit of using the filter with clean water (thus households
improve utility by switching to dirty water once they have the filter even though this
reduces health). Note this also implies that Fcw < Fdw, that is, the filter has less of a
health benefit with clean water than with dirty. Further, the willingness to pay for the
filter equals UF − UNF, so those who have perverse effects – and hence all else equal
get less net benefit from the filter – will also have relatively low willingness to pay. As
in Peltzman (1973), the non-convexity of the health production technology generates the
possibility of perverse effects and differentiates this setting from benchmark models of
health investment such as described in Greenstone and Jack (2015).

We also considered alternative mechanisms, such as improper use of the filter or san-
itation externalities (as discussed in Bennett 2012). While either could, in principle, pro-
duce detrimental impacts, both are unlikely in our setting. We find no evidence of im-
proper use causing detrimental effects. In fact, conditional on use, nearly all filters were
in good condition and well maintained. As for externalities, our heterogeneity analysis
finds that those with a low WTP who receive the filter have worse one-year outcomes than
households in the same village with the same WTP who were not randomly assigned – via
the BDM price draw or randomized price – to receive the filter. Since the treatment status
of one’s neighbors, who could be generating the negative externalities, is independent of
one’s own treatment status, sanitation externalities are unlikely to explain the observed
pattern of effects.



For Online Publication I-18

I Correlates of WTP, Detail

I.1 Feature Selection

As described in Section 6, we find that a model of demand using an a priori list of co-
variates such as wealth, education, and health status has limited predictive power for
both TIOLI purchase decisions and WTP elicited directly through BDM. This reflects a
common pattern for studies of health goods in low-income countries (Ashraf et al. 2010;
Cohen and Dupas 2010) and the consumer behavior literature more generally (Browning
and Carro 2007; Nevo 2011). In this appendix, we describe the use of LASSO for covariate
selection.

The LASSO (Tibshirani 1996), common in the machine learning literature, is a penal-
ized regression approach to variable subset (model) selection in which the data determine
the set of covariates. It solves a similar minimization problem to ordinary least squares,
but with a penalty for model complexity. This produces something similar to a linear
regression in which only a small number of predictors have non-zero coefficients. The
parameter estimates are given by

argmin L(β|x) + λ
p

∑
j=1

∣∣β j
∣∣ ,

where L(β|x) is the loss function, usually a quantity proportional to the negative log
likelihood. In our setting, we use the residual sum of squared errors for the BDM data,
where WTP is directly observed, and the negative log likelihood of the logistic function
for the TIOLI data, where WTP is a latent variable. The term λ ∑

p
j=1

∣∣β j
∣∣ penalizes the

inclusion of additional regressors, and λ is a tuning parameter that determines the extent
of this penalty. For small λ, the penalty is minor and LASSO recovers the OLS regression
coefficients. When λ is sufficiently large, some of the coefficients will be set to zero and
the LASSO performs variable selection.

In order to perform the LASSO, we standardize all predictors to have variance one.
We then randomly allocate half of the sample to a training set, which will be used to
select the tuning parameter with the best out-of-sample prediction properties, and half to
a hold-out set, on which we will estimate the model using the selected tuning parameter.
We choose a grid of λ values for which we compute the out-of-sample prediction error
using 10-fold cross validation.

To construct the cross-validation error, we divide our training sample, for example, the
BDM observations allocated to the training set, into 10 groups, or folds, of approximately
equal size. We reserve the observations in the first fold as a validation set and fit the
model, for each value of λ in the grid, on the observations in the other nine folds. We
then calculate the prediction error for the observations in the first (validation) fold. This
is calculated as the mean squared error in the BDM sample and the classification error in
the TIOLI sample. We repeat this procedure ten times, using each fold as a validation set.
This produces ten estimates of the cross-validation error for each value of λ. We select
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then refit the model using all available observations and the largest value of λ (the most
parsimonious model) that produced the lowest cross-validation error. This determines
the set of covariates. We then estimate the model using the hold-out sample.

We include the following set of baseline features in the models for both BDM and
TIOLI purchase decisions: number of adult females in the compound; number of adult
males in the compound; number of children in the compound; number of children aged
5 or less; marital status; whether the respondent is the primary caregiver; indicators and
counts of household assets (bicycle, bucket, chair, sewing machine, cooking pot, cutlass,
lantern, light bulb, mattress, mobile phone, motorcycle, radio, refrigerator, sewing ma-
chine, television, torches, video player); the first principle component of all assets; educa-
tional attainment; acres farmed; acres owned; shared land farmed; total loans outstand-
ing; primary occupation; pregnant; beliefs about actions that prevent diarrhea (boiling
water, clean clothes, clean dishes, eating clean food, cooking food, drink clean water, filter
water, good hygiene, using a latrine, medication, prayer or God, treating water, washing
hands, nothing, does not know); respondent has primary responsibility for water col-
lection in the compound; water source in the dry season (well; dugout; dam; borehole;
rainwater; private standpipe; public standpipe; public dug well; river, stream or pond);
water source in the rainy season (same categories as dry); status of water source in dry
season; protection status of water source in rainy season; water treatment activities (boil-
ing, ceramic filter, chemicals, cloth filter, pipe filter, letting settle); and village fixed effects.

We also consider measures of preferences and numeracy that were elicited for a subset
of households at the one-year follow-up: risk aversion in the gains domain, risk aver-
sion in the loss domain, and risk aversion in the gain/loss domain, forward digit span,
backwards digit span, total digit span, ambiguity aversion categories, and whether the
respondent indicated that she felt lucky in games of chance.

For the BDM subjects, we include the expressed willingness to pay for soap in the
BDM practice round. For TIOLI subjects, we include each subject’s purchase decision for
soap in the TIOLI practice round. We do not include the TIOLI price for soap, which was
randomly assigned and orthogonal to both individual characteristics and the TIOLI price
for the filter.

Table A7 reports the selected features and estimated coefficients in the hold-out sam-
ples for both the BDM and TIOLI groups. In both samples, the dominant feature relates
to the respondent’s purchase decision for soap in the practice round. Those with a higher
valuation for soap were more likely to purchase the filter or value it highly. This pre-
dictive power holds even when including all other household characteristics for which
we would imagine soap purchase behavior might serve as a proxy, such as education,
wealth, income, health beliefs, practices and status. Only village fixed effects, in the case
of TIOLI, have comparable predictive power. In contrast, other household characteristics
explain little of purchasing behavior. Characteristics related to education and asset own-
ership, which are often considered predictive of demand for health (Ashraf, Berry and
Shapiro 2010; Cohen and Dupas 2010), appear in the regularized model for BDM demand
but carry relatively limited explanatory power; they do not appear in the model for TIOLI
purchase decisions.

We then expand the set of features to include preferences and numeracy and estimate
the model on the smaller sample for which this data is available. Digit span (0.130), risk
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aversion in the gains domain (-0.074), and the indicator for whether the respondent indi-
cated that she felt lucky in games of chance (0.046) appear in the regularized model for
BDM subjects. None of these features appears in the TIOLI model.

I.2 Cross Validation

In this appendix we describe the k-fold cross validation procedure used to assess the per-
formance of the BDM and TIOLI mechanisms in predicting TIOLI responses. We begin
by randomly dividing the TIOLI sample into 10 groups of approximately equal size. The
first group is treated as a validation set, and we fit the latent demand model in Equation
(8) on the remaining nine groups via probit. We repeat this procedure ten times, treating
each group as a validation set in turn. We denote by r̂(−k)(Xic; p) the predicted proba-
bility of purchasing at price p for an individual with characteristics Xic, computed with
the kth part of the data removed. We then form a predicted binary purchase decision,
b̂i = 1

(
r̂(−k)(Xic; Pic) ≥ 0.5

)
for each observation in the validation set, where Pic is the

randomized TIOLI price actually faced by household i in compound c. We repeat this
procedure for all ten folds. We then estimate the accuracy of TIOLI for out-of-sample
prediction of behavior under the TIOLI mechanism itself based on the share of correct
predictions in the full TIOLI sample. The resulting accuracy rate is 76.0 percent.

To calculate the analogous accuracy rate of prediction based on the BDM mechanism,
we randomly divide the BDM sample into 10 groups of approximately equal size. Since
the validation set is drawn from the TIOLI sample, this procedure serves to replicate the
sampling variability and sample size effects of the cross-validation procedure within the
TIOLI sample. We estimate Equation (7) from the main text for the test set via ordinary-
least-squares and then estimate ˆwtp(−k)(Xic) for each observation in the corresponding
validation set from the TIOLI sample. Based on this estimation, we form a predicted
binary purchase decision b̂i = 1

(
ˆwtp(−k)(Xic) ≥ Pic

)
, for each observation in the vali-

dation set, where again Pic is the randomized TIOLI price actually faced by household i
in compound c. We repeat this procedure for all ten folds and estimate the accuracy of
BDM for out-of-sample prediction of behavior under the TIOLI mechanism. The share of
correct predictions in the full TIOLI sample is 73.9 percent. These accuracy rates compare
to a base rate—the accuracy of trivially predicting the most-frequent decision within each
validation set—of 56.2 percent. Consistent with the pattern of demand estimated by two
mechanisms, TIOLI more accurately predicts affirmative purchase decisions while BDM
performs better when predicting refusals.

To explore the relative performance of the two mechanisms in greater depth, we con-
struct ROC curves for both mechanisms and compare model accuracy via their respective
areas under the curve (AUCs). The ROC curve plots the sensitivity of the predictive
model (the rate of true positives) on the y-axis against the specificity (the rate of true
negatives) on the x-axis as we vary the cutoff for predicting a purchase. The simple com-
parison above is equivalent to setting the cutoff at a 50 percent probability of purchase.
The AUC is a commonly used measure to summarize the performance of a classifier over
all possible thresholds. Figure A8 displays the AUCs for the BDM and TIOLI models.
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The diagonal represents the performance of a model that randomly classified each obser-
vation. For TIOLI and BDM, the AUCs are 83 percent and 79 percent respectively. While
TIOLI outperforms BDM in predicting TIOLI behavior, their performance is remarkably
close. We consider this encouraging evidence that, at least in this setting, the noise gener-
ated by the BDM mechanism is outweighed by the additional information it provides.
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J Mechanism Effects, Detail

In this section we extend the discussion in Section 6.2 by providing further analysis of
the magnitude and potential sources of the differences between BDM and TIOLI-elicited
WTP.

J.1 Comparing Demand Under BDM and TIOLI

This subsection presents regression estimates of the differences in demand between BDM
and TIOLI at the three TIOLI price points, as displayed in Figure 1a of the main text.

In order to perform the comparison, we run a similar regression to that presented in
Section 6.2. We estimate

buyicp = αp + βpBDMic + x′icγ + εicp, (19)

where buyicp indicates whether subject i in compound c purchased at price p (under the
TIOLI mechanism), or would have purchased at price p given her bid (under the BDM
mechanism), and BDMic is an indicator for whether subject i was assigned to the BDM
mechanism. For each price p, αp represents the share purchasing under TIOLI and βp

represents the difference in shares between BDM and TIOLI at price p.32

The regression results are presented in Table A8. As shown in Columns 1, 3, and 5,
the difference between the two mechanisms is significant at the 5 percent level or greater
for each of the three prices. The test of joint significance of all three differences yields a
p-value of less than 0.001. While the absolute (percentage point) differences are declining
with each price, we cannot reject that all three differences are equal (p = 0.239 without
controls; p = 0.354 with controls), and there is no such pattern in relative (percentage)
differences. As shown in Columns 2, 4, and 6, the results are virtually unchanged with
the inclusion of controls.

J.2 Correlation Between BDM-TIOLI Gap and Risk Aversion

This sub-section presents details on the comparison of the BDM-TIOLI gap across ter-
ciles of risk aversion, discussed in Section 6.2 of the main text. In order to implement
the comparison between BDM and TIOLI, we collapse the more precise individual WTP
information from BDM to the binary purchase indicators generated by TIOLI. Our out-
come variable is buyi,p, which represents subject i’s purchase decision when facing a price
p ∈ {2, 4, 6}. For TIOLI subjects, this is just whether they agreed to purchase at the of-
fer price. For BDM subjects, buyi,p = 1 {WTPi ≥ p}, where WTPi is subject i’s BDM

32Since each BDM subject’s bid can be used to simulate purchase behavior at all three prices, each regres-
sion contains about three times as many BDM observations as TIOLI observations. We estimate the system
(one equation for each of p = 2, 4, 6) via seemingly unrelated regression to account for correlation of errors
across equations and to conduct cross-equation tests.
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bid. We create the variables RA1
i , RA2

i , RA3
i to indicate that subject i is in the first (most

risk-averse), second, or third (least risk-averse) tercile, respectively. We then estimate

buyicp =
3

∑
t=1

αt
pRAt

i +
3

∑
t=1

βt
p
(
RAt

i × BDMi
)
+ x′icγ + εicp, (20)

where BDMi is an indicator for whether subject i was assigned to the BDM mechanism.
For each price p, αt

p represents the purchase probability for TIOLI subjects in the t-th ter-
cile, while βt

p represents the “BDM effect” in the t-th tercile. The differences without con-
trols are presented in Figure A9. The top panel plots the estimated coefficients β̂1

2, β̂1
4, β̂1

6,
with 90 percent confidence intervals, for tercile 1 of risk aversion (the most risk-averse
subjects), while the middle and bottom panels plot the same set of coefficients for ter-
ciles 2 and 3 (the least risk-averse subjects), respectively. As Figure A9 makes clear, the
BDM-TIOLI gap is largest among the most risk-averse subjects (mean BDM effect−0.200,
p = 0.000), and has largely closed among the least risk-averse subjects (mean BDM effect
−0.051, p = 0.425). These results are unconditional, but they are robust to controlling
for a large set of household controls (see Figure A10) and when testing multiple possible
determinants of the BDM-TIOLI gap jointly (see Table A9).

J.3 Correlation Between BDM-TIOLI Gap and Observables

To supplement the analysis of risk aversion presented in Section 6.2, this section presents
an exploratory analysis of the correlation between the BDM-TIOLI gap and other rele-
vant observables. For binary observables, we compare the BDM-TIOLI gap between the
two levels of the variable; for continuous observables, we break the sample into terciles
and compare the top to the bottom tercile. Similar to Equation (20) of the main text, we
estimate

buyicp = α0p + α1pDi + β0pBDMi + β1p (Di × BDMi) + εicp, (21)

where Di is an indicator for the subgroup of interest and the other variables are as in
Equation (20). For each price p, β0p is the BDM-TIOLI gap (the difference in purchase
probabilities) for subjects with D1 = 0, β0p + β1p is the BDM-TIOLI gap for subjects with
D1 = 1, and β1p is the difference between the two sub-groups. We then average the
coefficients over the three TIOLI prices to obtain β0, β1 and β0 + β1.

Figure A11 presents the results, with levels (β0 and β0 + β1) in the top panel (Figure
A11a) and differences (β1) in the bottom panel (Figure A11b). First, household wealth
is associated with a smaller BDM-TIOLI gap, but not to the same extent as risk aversion
(see Figure A9 and discussion above). Second, the gap among subjects who have attended
school is approximately zero, although this is imprecisely estimated since only nine per-
cent of subjects have ever attended school. On the other hand, the gap is wider among
subjects who scored in the top tercile of the digit span test. Third, the gap is narrower
among subjects who have a child age 0 to 5, and narrower still (with a point estimate close
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to zero) if one or more children has had a case of diarrhea in the previous two weeks. This
may suggest that respondents with more at stake took the exercise more seriously. On the
other hand, the gap is significantly wider among respondents whose water samples were
in the top tercile in terms of E. coli (those with the poorest water quality). This is some-
what surprising, especially since the gap is largely unaffected by turbidity, which, unlike
E. coli, is visible.

The results in Figure A11 test one covariate at a time, but the results are generally
similar when we test several covariates jointly, as shown in Table A9. Note that water
quality is not included in this comparison because of sample size limitations – we col-
lected the risk aversion measure only in the one-year sample of villages (8 of 15 villages),
and tested water only in a 50 percent subsample of households. Table A10 repeats this
exercise for the full sample with just the variables available for all households household
survey, and shows that the coefficients and statistical significance of these variables are
similar in single and joint tests.

J.4 BDM and TIOLI Experimental Sub-Treatments

This section describes the experimental sub-treatments designed to test mechanisms be-
hind the BDM-TIOLI gap. We test the “standard” presentation of the BDM and TIOLI
mechanisms against four sub-treatments that incorporated modifications to the sales scripts.
Descriptive graphs demand across treatments are provided in Figures A12 and A13, with
formal statistical tests reported in Tables A11 and A12.33

The first two sub-treatments were designed to test the hypothesis that the stated prices
in the TIOLI treatment could cause respondents to anchor their valuations to those prices.
In the “anchoring” treatments for both BDM and TIOLI, we informed subjects that the
price of the filter in the Tamale town market (the nearest market town) was GHS 20. Based
on our pilot results, we believed this information would dominate any conveyed in the
TIOLI price, placing both mechanisms on equal footing and allowing us to estimate any
anchoring or signaling effects from the offer price. However, these anchoring treatments
did not produce any consistent effect on BDM bids or TIOLI purchase behavior. There
was a significant effect on TIOLI demand at GHS 4 (−0.233, p < 0.05), but there was no
effect at the other TIOLI prices or in BDM bids.

We also included a “random TIOLI” sub-treatment, in which the TIOLI offer price was
drawn by the respondent from a cup of numbered wooden beads, the same mechanism
used to determine the BDM price. The aim was to make salient the arbitrariness of the
TIOLI prices and reduce the likelihood that they were serving as signals of quality. Based

33Table A11 presents the results of two tests that compare the distributions of the BDM sub-treatments
using both the Wilcoxon-Mann-Whitney rank-sum and Kolmogorov-Smirnov tests. Cluster-robust signifi-
cance levels for the distributional tests are constructed via a bootstrap percentile method. We pool data from
the two treatments being compared, draw block-bootstrap samples, where the compound is the block, and
then randomly assign placebo treatments by compound and run the distributional test in question. Since
the placebo treatments are randomly generated, the null hypothesis of equality of distribution is true by
construction. By sampling compounds and assigning placebo treatments by compound, we preserve the
clustering structure in the data. We repeat this for 500 bootstrap repetitions, and then obtain a p-value for
our test by finding where the original test statistic falls in the distribution of bootstrap test statistics.
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on our pilot results and the evidence that in some settings BDM bids are sensitive to
the underlying price distribution (Bohm et al. 1997; Urbancic 2011; Mazar et al. 2014),
we hypothesized that the randomness in the price draw may contribute to the BDM-
TIOLI gap, through a failure to reduce compound lotteries, subjects’ general discomfort
with randomness and ambiguity, or other departures from expected utility maximization.
However, demand under the random TIOLI treatment was statistically indistinguishable
from standard TIOLI, indicating that our efforts to equate the perceived randomness in
the two mechanisms had no effect on subjects’ purchase behavior. We note, however,
that our modifications were designed to increase the perceived randomness of the TIOLI
mechanism, and as we speculate in the text, reducing the perceived randomness of the
BDM mechanism may narrow the gap.

Unrelated to explaining potential differences between BDM and TIOLI, we also con-
ducted a “market study BDM” treatment in which we told respondents that we were
using the information from the study to help decide on the future price of the filter in
similar villages. If strategic bidding was important, then this sub-treatment could lead to
enhanced strategic bidding and decrease BDM bids. However, we found that the market
study treatment increased valuations, with marginal statistical significance.

J.5 Comparing Demand for Soap

As we argue in Section 6.2, the gap in elicited WTP between BDM and TIOLI also does
not appear to be driven by lack of familiarity with the filter and uncertainty of its benefits.
Although the sale of soap was primarily intended to be a practice round for the elicitation
mechanism, the data provides suggestive evidence of the BDM-TIOLI gap for a more
familiar product. Using these data, we find a similar difference in elicited WTP between
the mechanisms: as shown in Table A13, BDM predicts between 8 and 45 percentage
points lower purchase at the TIOLI price points for the soap.

J.6 Ex Post Regret

As discussed in Section 6.2, 19.2 percent of BDM respondents stated that they wished
they had bid more. As shown in table A14, the proportion expressing regret is highest for
those who narrowly missed winning in BDM: roughly 40 percent of those who missed by
GHS 1 or less wished that they had bid more, with this percentage declining to approxi-
mately 12 percent among those who missed by GHS 5 to 10. To estimate the influence of
regret on elicited WTP, we calculate what the adjustment to BDM bids would have been
if all respondents who wished they had bid more had actually bid the value of the draw.
Because those whose bid exceeded their draw cannot express regret, we apply an adjust-
ment to this group that equals the average adjustment of BDM losers who have similar
bids. Calculated in this manner, the average adjustment across all subjects equals GHS
0.6, or about 60 percent of the gap between BDM and TIOLI. Note that this likely repre-
sents an upper bound on underbidding due to regret because responses were not tied to
an actual purchase decision. The share of respondents who actually offered to pay more
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than their final bid is substantially less than those who stated they wished they had more,
at 5.4 percent. If we adjust the bids of those who offered to pay more up to the value of
the draw (and apply an adjustment for those whose bid exceeded the draw following the
procedure described above) this would result in an average increase in WTP of GHS 0.07,
which would account for little of the BDM-TIOLI gap.

Although the upwards revision of bids after the price draw could result from respon-
dents misunderstanding the BDM mechanism, it is also consistent with non-expected
utility maximization in which a respondent revises her reference point upwards when the
price is revealed. Further, a substantial share of TIOLI subjects, 17.0 percent, attempted
to bargain with surveyors over the randomly drawn price. As noted in the text, we take
this as evidence that both mechanisms may have seemed unusual to respondents who are
unaccustomed to fixed prices.
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K Using BDM in the Field

This section offers additional discussion of the practical tradeoffs between BDM and
TIOLI for researchers considering using one or the other method. The key advantages
of BDM are precision in measuring WTP, the ability to separately identify selection by
WTP and the impacts of price paid, and the ability to estimate heterogeneous treatment
effects with respect to WTP. The key disadvantage is complexity, which carries both fixed
costs – time to tailor BDM to local context and train enumerators – and variable costs –
time to explain BDM to subjects, conduct practice rounds, etc. Which method is prefer-
able will depend on context and the questions the researcher is asking, but the relative
advantages and disadvantages just mentioned offer some general guidelines.

First, the number of prices at which the researcher would like to measure demand
affects the choice. The more prices of interest there are, the more advantageous BDM is
likely to be, since more prices will require ever greater TIOLI sample sizes. Second, if the
causal effect of price paid is of interest and a surprise randomized discount is not feasible,
then BDM becomes attractive, since TIOLI cannot separately identify selection by WTP
from the effect of price paid. Third, the extent to which it is plausible that treatment ef-
fects vary by WTP affects the choice. If there is strong prior evidence that treatment effects
are constant, or constant with respect to WTP, then this tips the balance towards TIOLI.
Fourth, developing a context-specific BDM protocol is a significant investment, and it is
important to spend time explaining to and practicing with subjects. Based on our experi-
ence, multiple demonstration rounds with a different product or products, emphasis on
the bid as the subject’s optimal response, training the subjects to understand their bid
as their maximum WTP, and the understanding check after respondents stated their bids
are essential to successful implementation. These procedures have been emphasized else-
where in the laboratory literature as important for eliciting accurate WTP through BDM
(Plott and Zeiler 2005), although more research is needed on how each detail may con-
tribute to subjects’ understanding. Finally, the cost of each observation (including the cost
of the item itself, the cost of collecting follow-up data on use or the outcome of interest,
etc.) affects the tradeoff. If each observation is very cheap, then the burden of increased
sample size from TIOLI is less of a concern. If each observation is relatively expensive,
it becomes more important to obtain as much information as possible from each subject
and the balance tilts towards BDM.



For Online Publication K-28

Table A1: Constant-Effects Instrumental Variables: Flexible Demand Curve
Dependent Variable: Child age 0 to 5 has had diarrhea over previous two weeks

Combined all subjects TIOLI subjects BDM subjects

(1) (2) (3) (4) (5) (6)

A. One-month followup
Bought Filter -0.057∗ -0.066∗∗ -0.083 -0.085∗ -0.036 -0.048

(0.033) (0.032) (0.051) (0.049) (0.047) (0.040)
Mean dependent variable 0.145 0.145 0.149 0.149 0.142 0.142
First-stage F-statistic 441.0 228.4 111.2 96.1 504.0 338.8
Number of compounds 472 472 244 244 229 229
Number of subjects 786 786 418 418 368 368
Number of children 1244 1244 665 665 579 579

B. One-year followup
Bought Filter 0.116∗ 0.138∗∗ 0.142 0.211∗∗ 0.115 0.127

(0.067) (0.067) (0.100) (0.100) (0.089) (0.085)
Mean dependent variable 0.241 0.241 0.215 0.215 0.262 0.262
First-stage F-statistic 132.3 80.2 58.8 36.0 179.3 170.0
Number of compounds 247 247 121 121 126 126
Number of subjects 387 387 197 197 190 190
Number of children 539 539 266 266 273 273

Controls No Yes No Yes No Yes
Village FEs No Yes No Yes No Yes

Notes: Each column displays the results of a linear two-stage least squares regression of child diarrhea
status at the child level on filter purchase. For TIOLI subjects, filter purchase is instrumented dummies
for each level of the randomly assigned TIOLI price (GHS 2, 4, 6). For BDM subjects, filter purchase
is instrumented by a quadratic in the random BDM price draw. Controls include all variables (other
than BDM bid) listed in Table 1. Missing values of control variables are set to 0, and dummy variables
are included to indicate missing values. Standard errors clustered at the compound (extended family)
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A2: Relationship between Use and Willingness to Pay

Filter present Storage vessel Clay pot Usage index
and unbroken contains water contains water

(1) (2) (3) (4)

A. Short-term effects
Bid (GHS) -0.010 -0.008 -0.009 -0.022

(0.010) (0.012) (0.013) (0.021)
Mean dep. var. 0.877 0.753 0.728 -0.003
Adj. R-sqd. 0.002 -0.002 -0.002 0.002
Num. Obs. 235 235 235 235

B. One-year effects
Bid (GHS) 0.013 0.027∗ -0.013 0.018

(0.014) (0.014) (0.012) (0.021)
Mean dep. var. 0.641 0.486 0.380 0.066
Adj. R-sqd. -0.002 0.016 -0.002 -0.003
Num. Obs. 142 142 142 142

Notes: The sample includes those subjects in the BDM treatment who purchased the filter,
i.e., drew a price less than or equal to their bid. Each column presents the results of a
separate regression of the depend variable, listed in the column heading, on the willingness
to pay, i.e, the subject’s bid in BDM. Usage index is the average of the normalized values of
the three individual usage measures. Usage measures are observed by the enumerator at
indicated follow-up survey. Standard errors clustered at the compound (extended family)
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3: Attrition -- 1-month survey

Baseline Surveyed Not Surveyed Difference
(1) (2) (3) (4)

Share of households 0.871 0.129

Assigned to BDM treatment 0.480 0.479 0.485 0.006
[0.500] [0.500] [0.501] (0.043)

Number of respondents in compound 3.593 3.580 3.681 0.101
[2.323] [2.378] [1.914] (0.207)

Respondent’s husband lives in compound 0.794 0.804 0.730 -0.074∗∗

[0.404] [0.397] [0.445] (0.037)

One or more children age 0-5 in household 0.723 0.713 0.791 0.078∗∗

[0.448] [0.452] [0.408] (0.035)

Number of children age 0-5 in household 1.569 1.561 1.620 0.059
(conditional on positive) [0.801] [0.760] [1.017] (0.111)

Num. children age 0-5 w. diarrhea in prev. 2 wks. 0.337 0.328 0.388 0.059
(among households with children age 0-5) [0.592] [0.597] [0.563] (0.055)

Num. children age 6-17 w. diarrhea in prev. 2 wks. 0.075 0.081 0.033 -0.047∗∗

(among households with children age 0-5) [0.335] [0.349] [0.181] (0.023)

Respondent ever attended school 0.090 0.088 0.104 0.016
[0.286] [0.283] [0.307] (0.025)

Respondent’s spouse ever attended school 0.233 0.225 0.300 0.075
[0.423] [0.418] [0.464] (0.078)

Wealth index 0.132 0.115 0.245 0.130
[1.555] [1.556] [1.549] (0.131)

Improved water source, all year 0.187 0.185 0.202 0.017
[0.390] [0.389] [0.403] (0.036)

Treats water with an effective method 0.115 0.107 0.166 0.059∗

[0.319] [0.309] [0.373] (0.035)

Water quality: E. coli (MPN, z-score) -0.052 -0.050 -0.067 -0.018
[0.949] [0.958] [0.877] (0.108)

Water quality: Turbidity (index, z-score) -0.065 -0.080 0.072 0.151
[0.997] [0.985] [1.100] (0.141)

Bid for filter (GHS) 3.051 3.022 3.243 0.221
(among BDM respondents) [2.268] [2.247] [2.414] (0.276)

Filter draw (GHS) 4.650 4.621 4.842 0.221
(among BDM respondents) [3.663] [3.669] [3.641] (0.434)

Filter offer price (GHS) 3.824 3.864 3.548 -0.316
(among TIOLI respondents) [1.616] [1.604] [1.682] (0.199)

Notes: Standard deviations in brackets. Standard errors clustered at the compound (extended family)
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A4: Attrition -- 1-year survey

Baseline Surveyed Not Surveyed Difference
(1) (2) (3) (4)

Share of households 0.904 0.096

Assigned to BDM treatment 0.479 0.488 0.400 -0.088
[0.500] [0.500] [0.494] (0.084)

Number of respondents in compound 3.676 3.620 4.215 0.596
[2.552] [2.523] [2.781] (0.378)

Respondent’s husband lives in compound 0.800 0.816 0.646 -0.170∗∗

[0.400] [0.388] [0.482] (0.070)

One or more children age 0-5 in household 0.722 0.725 0.692 -0.033
[0.448] [0.447] [0.465] (0.062)

Number of children age 0-5 in household 1.556 1.578 1.333 -0.245∗∗

(conditional on positive) [0.763] [0.771] [0.640] (0.114)

Num. children age 0-5 w. diarrhea in prev. 2 wks. 0.367 0.379 0.244 -0.134∗

(among households with children age 0-5) [0.606] [0.620] [0.435] (0.072)

Num. children age 6-17 w. diarrhea in prev. 2 wks. 0.080 0.079 0.088 0.009
(among households with children age 0-5) [0.288] [0.288] [0.288] (0.052)

Respondent ever attended school 0.099 0.093 0.154 0.061
[0.298] [0.290] [0.364] (0.047)

Respondent’s spouse ever attended school 0.303 0.311 0.200 -0.111
[0.461] [0.464] [0.414] (0.103)

Wealth index 0.030 0.070 -0.341 -0.411
[1.574] [1.553] [1.726] (0.269)

Improved water source, all year 0.216 0.220 0.185 -0.035
[0.412] [0.414] [0.391] (0.069)

Treats water with an effective method 0.107 0.106 0.123 0.017
[0.310] [0.308] [0.331] (0.043)

Water quality: E. coli (MPN, z-score) -0.132 -0.113 -0.313 -0.200
[0.928] [0.951] [0.664] (0.131)

Water quality: Turbidity (index, z-score) -0.348 -0.353 -0.298 0.055
[0.532] [0.536] [0.495] (0.088)

Bid for filter (GHS) 3.068 3.150 2.115 -1.035∗∗∗

(among BDM respondents) [2.383] [2.428] [1.519] (0.369)

Filter draw (GHS) 4.606 4.632 4.308 -0.324
(among BDM respondents) [3.585] [3.614] [3.290] (0.631)

Filter offer price (GHS) 3.768 3.778 3.692 -0.085
(among TIOLI respondents) [1.636] [1.648] [1.559] (0.298)

Notes: Standard deviations in brackets. Standard errors clustered at the compound (extended family)
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A5: Casual Effect of Prices

Filter Present Storage Vessel Clay Pot
and Undamaged Contains Water Contains Water Usage Index

(1) (2) (3) (4)

A. Short-term effects
Draw 0.017 0.037∗ -0.003 0.043

(0.018) (0.022) (0.024) (0.038)
Mean Dependent Variable 0.877 0.753 0.728 -0.003
R-squared 0.020 0.033 0.010 0.025
Observations 235 235 235 235

B. One-year effects
Draw -0.013 0.021 0.019 0.018

(0.034) (0.033) (0.033) (0.051)
Mean Dependent Variable 0.641 0.486 0.380 0.066
R-squared 0.029 0.033 0.010 0.015
Observations 142 142 142 142

Notes: The sample includes those subjects in the BDM treatment who purchased the filter, i.e., drew
a price less than or equal to their bid. Each column presents the results of a separate regression of
the dependent variable, listed in the column heading, on BDM draw and BDM bid. See Section 5 for
discussion of data. Usage index is the average of the normalized values of the three individual usage
measures. Usage measures are observed by enumerator at indicated follow-up survey. Standard
errors clustered at the compound (extended family) level in parentheses.
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Table A6: Estimated Impacts of Pricing Policy

Price (GHS)

0 1 2 3 4 5 6

Share Purchasing 1.00 0.94 0.73 0.46 0.31 0.19 0.11

A. Constant one-month effects
Diarrhea cases averted per household (conditional on purchase) 1.43 1.43 1.43 1.43 1.43 1.43 1.43
Diarrhea cases averted per household (unconditional) 1.43 1.35 1.05 0.66 0.44 0.28 0.15
DALYs averted per household (conditional on purchase) 0.041 0.041 0.041 0.041 0.041 0.041 0.041
DALYs averted per household (unconditional) 0.041 0.038 0.030 0.019 0.013 0.008 0.004
Average social cost per DALY (USD) 369 369 369 369 369 369 369
Marginal cost per DALY (USD) 369 369 369 369 369 369

B. Average of one-month effects and one-year effects
Diarrhea cases averted per household (conditional on purchase) -1.09 -0.72 0.62 2.73 4.29 5.73 6.81
Diarrhea cases averted per household (unconditional) -1.09 -0.68 0.46 1.26 1.33 1.10 0.73
DALYs averted per household (conditional on purchase) -0.031 -0.021 0.018 0.077 0.121 0.162 0.193
DALYs averted per household (unconditional) -0.031 -0.019 0.013 0.036 0.038 0.031 0.021
Average social cost per DALY (USD) – – 849 194 123 92 78
Marginal cost per DALY (USD) – – – 361 128 79

Notes: In Panel A, short-term impacts on diarrhea are assumed to be constant and last for one year.
Panel B assumes the average of short- and long-term impacts last for one year. In Panel B, the short-
term impacts are constant and the long-term impacts are linear in willingness-to-pay. Diarrhea in-
cidence is converted to DALYs at the rate of 35.3 cases per year to one DALY, using data from the
Global Burden of Disease Collaborative Network (2017). The average social cost does not account for
revenue generated from sales. The marginal cost per DALY is computed as the difference in costs
between price P − 0.5 and price P + 0.5 divided by the difference in DALYs averted between price
P− 0.5 and price P + 0.5. Missing entries in the average and marginal cost rows indicate that costs
cannot not be computed because treatment effects are negative for average or marginal households at
the prices indicated.
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Table A7: Correlates of Willingness to Pay, LASSO Regularization

Regularized Coefficient

Variable BDM TIOLI
BDM soap bid 0.322 -
Purchased TIOLI soap - 0.232
Village fixed effect, V08 -0.007 -0.164
Village fixed effect, V09 - -0.050
Village fixed effect, V12 - 0.230
Highest education attained, kindergarten 0.075 -
Highest education attained, other 0.001 -
Spouse occupation, animal tending 0.023 -
Primary occupation, non-ag wage labor - -0.010
Primary occupation, household enterprise - 0.001
Household has mobile phone 0.019 -
Number of phones in household 0.016 -
Number of cutlasses in household -0.002 -
Household has chair -0.010 -
Primary water source, dry season: dugout -0.005 -
Primary water source, dry season: dam - 0.009
Household treats water by boiling 0.004 -
Believes hygiene prevents diarrhea - 0.062

Notes: Regularized coefficients reported for all features with non-zero coefficients in
test sample using regularization parameter (λ) with minimum out-of-sample error
rate in training sample. See Appendix I.1 for details.
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Table A8: Demand Comparison by Purchase Mechanism
Take-it-or-leave-it Price Points

Dependent Variable: WTP ≥ Price (GHS)

Price = 2 Price = 4 Price = 6
(1) (2) (3) (4) (5) (6)

Difference (BDM - TIOLI) -0.182∗∗∗ -0.171∗∗∗ -0.163∗∗∗ -0.152∗∗∗ -0.100∗∗ -0.103∗∗∗

(0.033) (0.033) (0.052) (0.052) (0.040) (0.039)
Mean TIOLI Purchase 0.915 0.915 0.473 0.473 0.207 0.207
Controls: No Yes No Yes No Yes
Number of BDM Respondents 607 607 607 607 607 607
Number of TIOLI Respondents 246 246 224 224 188 188
Number of clusters 395 395 390 390 376 376

Notes: BDM acceptance rate calculated based on share of respondents bidding greater than or equal
to the evaluated price. TIOLI acceptance rate equal to share of respondents offered the evaluated price
who agreed to purchase. Controls include all variables listed in Table 1 (except BDM bid). Missing
values of the control variables are set to 0, and dummy variables are included to indicate missing
values. Standard errors clustered at the compound (extended family) level in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01. Joint p-value testing significance of BDM across all three equations (GHS
2, 4, 6): 0.000 without controls; 0.000 with controls. P-value testing equality of BDM across equations:
0.239 without controls; 0.354 with controls.
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Table A9: Relationship between Household Observables and BDM-TIOLI Gap
Risk Aversion Sample (One-Year Follow-Up Villages)

Pairwise Joint
(1) (2)

Top vs. bottom tercile of risk aversion −0.138∗ −0.150∗

(0.081) (0.083)
First principal component of durables ownership 0.030 0.030

(0.028) (0.030)
Respondent has ever attended school 0.141 0.180∗

(0.113) (0.107)
Has child age 0-5 −0.002 0.004

(0.095) (0.100)
Husband lives in compound 0.066 0.037

(0.094) (0.098)
All-year access to improved water source −0.150 −0.104

(0.106) (0.097)
Currently treats water −0.077 0.011

(0.129) (0.155)
Ambiguity aversion category (more is more AA) 0.003 0.003

(0.009) (0.010)
Total digit span score forward + backward −0.028 −0.035∗

(0.018) (0.019)
Number of compounds 233 233
Number of households 399 399

Notes: This table presents estimates of the interaction between the mean BDM-TIOLI gap (the prob-
ability of purchase at 2, 4 or 6 GHS) and the household observable indicated. Column (1) shows the
results of pairwise comparisons: an indicator for whether the household would agree to purchase
the filter at the given price on an indicator for the BDM treatment, a level term for the indicated co-
variate, and the interaction between the two. Column (2) shows the estimated interaction terms in
a joint regression. Coefficients are estimated for offer prices of 2, 4 and 6 and then averaged across
the three prices, with standard errors calculated by SUR. The sample consists of households surveyed
in the one-year followup (conducted in 8 of the 15 study villages) in the top or bottom tercile of risk
aversion. Standard errors clustered at the compound (extended family) level in parentheses.
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Table A10: Relationship between Household Observables and BDM-TIOLI Gap
All Villages; Household Survey Measures Only

Pairwise Joint
(1) (2)

First principal component of durables ownership 0.007 0.001
(0.016) (0.016)

Respondent has ever attended school 0.137∗∗ 0.128∗∗

(0.061) (0.059)
Has child age 0-5 0.138∗∗∗ 0.129∗∗∗

(0.045) (0.045)
Husband lives in compound 0.050 0.036

(0.053) (0.053)
All-year access to improved water source 0.056 0.072

(0.060) (0.059)
Currently treats water 0.022 0.028

(0.075) (0.071)
Number of compounds 556 556
Number of households 1265 1265

Notes: This table presents estimates of the interaction between the mean BDM-TIOLI gap (the prob-
ability of purchase at 2, 4 or 6 GHS) and the household observable indicated. Column (1) shows the
results of pairwise comparisons: an indicator for whether the household would agree to purchase the
filter at the given price on an indicator for the BDM treatment, a level term for the indicated covari-
ate, and the interaction between the two. Column (2) shows the estimated interaction terms in a joint
regression. Coefficients are estimated for offer prices of 2, 4 and 6 and then averaged across the three
prices, with standard errors calculated by SUR. Standard errors clustered at the compound (extended
family) level in parentheses.
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Table A11: Equality of Bid Distributions
Comparison with Standard BDM

Market Anchor
(1) (2)

A. Wilcoxon
Z-statistic 2.754 −0.900
P-value 0.022 0.748
Num. Obs. 411 408

B. Kolmogorov-Smirnov
D-statistic 0.144 0.058
P-value 0.050 0.777
Num. Obs. 411 408

Notes: This table reports results of nonparametric tests for equality of bid distributions across BDM
treatments. The anchoring and marketing BDM treatments (describe in the text) are separately com-
pared to the standard BDM treatment. P-values robust to clustering at the compound level are calcu-
lated via randomization inference.
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Table A12: Differences Between TIOLI sub-treatments

Price=2 Price=4 Price=6
(1) (2) (3)

Random TIOLI 0.018 -0.133 0.022
(0.063) (0.104) (0.084)

Anchoring TIOLI 0.066 -0.233
∗∗

-0.087
(0.059) (0.114) (0.075)

Constant 0.890 0.600 0.232
(0.053) (0.083) (0.056)

Mean Dependent Variable 0.915 0.473 0.207
R-squared 0.009 0.036 0.014
Observations 246 224 188

Notes: This table reports results of a linear probability model for purchase of the filter at the TIOLI
price indicated in the column header. The ommitted category is standard TIOLI. The p-values for
joint tests across equations are calculated from SUR estimation. P-value for joint test that coefficient
on Random TIOLI=0 in all three equations: 0.587. P-value for joint test that coefficient on Anchoring
TIOLI=0 in all three equations: 0.077. Standard errors clustered at the compound (extended family)
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A13: Soap Demand Comparison by Purchase Mechanism
Soap Take-it-or-leave-it Price Points

Dependent Variable: WTP ≥ Price (GHS)

Price = 0.3 Price = 0.5 Price = 0.7
(1) (2) (3) (4) (5) (6)

Difference (BDM - TIOLI) -0.077∗∗∗ -0.067∗∗ -0.169∗∗∗ -0.171∗∗∗ -0.454∗∗∗ -0.449∗∗∗

(0.028) (0.029) (0.053) (0.054) (0.058) (0.055)
Mean TIOLI Purchase 0.947 0.947 0.757 0.757 0.663 0.663
Controls: No Yes No Yes No Yes
Number of BDM Respondents 607 607 607 607 607 607
Number of TIOLI Respondents 189 189 148 148 172 172
Number of clusters 364 364 359 359 356 356

Notes: BDM acceptance rate calculated based on share of respondents bidding greater than or equal
to the evaluated price. TIOLI acceptance rate equal to share of respondents offered the evaluated
price who agreed to purchase. Controls include all variables listed in Table 1. Missing values of the
control variables are set to 0, and dummy variables are included to indicate missing values. Standard
errors clustered at the compound (extended family) level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01. Joint p-value testing significance of BDM across all three equations (GHS 0.3, 0.5, 0.7):
0.000 without controls; 0.000 with controls. P-value testing equality of BDM across equations: 0.000
without controls; 0.000 with controls.
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Table A14: BDM: Respondents Interested in Changing Their Bid Ex Post

Difference between Number whose draw Frac. who wished Frac. who tried
draw and bid exceeded bid they bid more to pay more

(1) (2) (3)

Difference<1 20 0.45 0.30

1≤Difference<2 45 0.33 0.13

2≤Difference<3 44 0.25 0.07

3≤Difference<4 32 0.19 0.06

4≤Difference<5 33 0.12 0.03

Difference>5 159 0.12 0.00

Total 333 0.19 0.05

Notes: Column 1 presents the number of subjects in the BDM treatment whose draw exceeded their
bid. Column 2 presents the fraction of those subjects who answered "Yes" to the question "Do you
wish you had bid higher?" Column 3 presents the fraction of those subjects who attempted to pay
more than their bid after the draw was realized.
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Figure A1: The Kosim filter
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Figure A2: Experimental Timeline for a Typical Village

 

 

 

 

 

 

 

 

 

 

 

Week: 0 1   2 6 54 



For Online Publication K-44

Figure A3: Participant Flow Diagram

𝑁𝑁𝑉𝑉 = 15 (Villages) 
𝑁𝑁𝐶𝐶 = 573 (Compounds) 
𝑁𝑁𝐻𝐻 = 1,388 (Subjects)

BDM
𝑁𝑁𝐶𝐶 = 285
𝑁𝑁𝐻𝐻 = 676

TIOLI
𝑁𝑁𝐶𝐶 = 290
𝑁𝑁𝐻𝐻 = 712

Sale

BDM: Sale Completed
𝑁𝑁𝐻𝐻 = 607

BDM: Sale Not Completed
Refused: 𝑁𝑁𝐻𝐻 = 1

Absent, Migrated, Ill: 𝑁𝑁𝐻𝐻 = 63
Data incorrectly recorded: 𝑁𝑁𝐻𝐻 = 5

TIOLI: Sale Not Completed
Refused: 𝑁𝑁𝐻𝐻 =0

Absent, Migrated, Ill: 𝑁𝑁𝐻𝐻 = 45
Data incorrectly recorded: 𝑁𝑁𝐻𝐻 = 5

TIOLI: Sale Completed
𝑁𝑁𝐻𝐻 = 658

One-Month Follow-Up

BDM: 1-Month Survey Completed
𝑁𝑁𝐻𝐻 = 528

𝑁𝑁𝐶𝐶𝐶𝐶𝐶 = 578 (Children age 0-5)

BDM: No 1-Month Survey
Refused: 𝑁𝑁𝐻𝐻 =3

Absent, Migrated, Ill: 𝑁𝑁𝐻𝐻 = 76

TIOLI: No 1-Month Survey
Refused: 𝑁𝑁𝐻𝐻 = 1

Absent, Migrated, Ill: 𝑁𝑁𝐻𝐻 =80

TIOLI: 1-Month Survey Completed
𝑁𝑁𝐻𝐻 = 528

𝑁𝑁𝐶𝐶𝐶𝐶𝐶 = 665 (Children age 0-5)

One-Year Follow-Up

BDM: 1-Month Survey Completed
𝑁𝑁𝐻𝐻 = 303

𝑁𝑁𝐶𝐶𝐶𝐶𝐶 = 273 (Children age 0-5)

BDM: No 1-Year Survey
𝑁𝑁𝐻𝐻 = 23

TIOLI: No 1-Year Survey
𝑁𝑁𝐻𝐻 = 33

TIOLI: 1-Month Survey Completed
𝑁𝑁𝐻𝐻 = 321

𝑁𝑁𝐶𝐶𝐶𝐶𝐶 = 266 (Children age 0-5)

Enrollment

Randomization

𝑁𝑁𝑉𝑉 = 8 villages randomly selected for one-year follow-up survey
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Figure A4: Kernel IV Estimates of Treatment Effects
Ancillary Statistics

(a) One-Month Follow-Up
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(b) One-Year Follow-Up

0.4

0.5

0.6

0.7

0.8

50

100

150

200

1 2 3 4 5 6
BDM Filter Bid (GHS)

Num. children (L axis) 1st stage ptl. R2 (R axis)

Ancillary statistics

Notes: The solid line (left axis) plots the sample size, i.e., the number of children receiving positive weight
in the kernel regression, at each evaluation point WTP = 1.0, 1.1, . . . , 6.0 (GHS). The dashed line (right
axis) plots Shea’s partial R-squared for the excluded instrument (the BDM price draw) in the first-stage
regression at each evaluation point.
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Figure A5: Difference in attrition rates: BDM Winners vs. Losers
1-year follow-up survey; BDM participants with children 0 to 5 years old
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Notes: This figure plots estimated differences, with 95 percent confidence bands, in the rate of attrition from
the one-year follow-up survey between BDM subjects who won the filter and subjects who did not win.
The line plots estimates from kernel regressions of attrition on winning the filter, using Epanechnikov ker-
nel with Silverman’s rule-of-thumb bandwidth. Standard errors are robust to clustering at the compound
(extended family) level.
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Figure A6: Local Instrumental Variables and Marginal Treatment Effects

(a) Step 1: Propensity Score
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(b) Step 2: Local Instrumental Variables
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(Continued next page)
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Figure A6: Local Instrumental Variables (Continued)

(c) Marginal Treatment Effect
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First step (propensity score): local linear regression of purchase (T) on draw (Z).
Second step (LIV): local linear regression of outcome on estimated propensity score.
Clustered standard errors in second stage (no bootstrapping).
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(d) Comparison of BDM-IV and LIV
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Figure A7: Health Outcomes for Long-Term Non-Users
All Subjects with Children 0 to 5

(a) Reported Cases (1 Year)
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Notes: This figure displays incidence of diarrhea (lower is better) in the prior two weeks for children aged
five or under among all households that are not using the filter at the one-year follow up. The second figure
separates purchasers into those who were not using the filter after one month and those who were using
the filter but stopped using at the one-year follow up. For all households, use is defined as an indicator for
the filter being present, operational, and either containing water in the clay pot or storage vessel. Whiskers
represent 95 percent confidence intervals.
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Figure A8: ROC Comparison of BDM vs. TIOLI for Predicting TIOLI Purchase
Behavior

Notes: The target outcome is the TIOLI purchase decision (yes/no) in
cross-validation sample. The ROC curves plot the sensitivity of each
predictive model (the rate of true positives) vs. the specificity (the rate
of true negatives) as we vary the threshold for predicting purchase.
The 45-degree line represents the performance a model that randomly
classified each observation.
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Figure A9: BDM–TIOLI gap by tercile of risk aversion

(a) Tercile 1 (most risk-averse)
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(b) Tercile 2
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(c) Tercile 3 (least risk-averse)
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Notes: These figures plot estimated differences, with with 90 percent confidence intervals, between the
share of BDM subjects and the share of TIOLI subjects agreeing to purchase at each TIOLI price (GHS 2, 4,
6), separately by tercile of risk aversion. The results here are unconditional, see Figure A10 for robustness
checks with additional controls.
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Figure A10: BDM–TIOLI gap by tercile of risk aversion
Robustness check: with controls, including ambiguity aversion

(a) Tercile 1 (most risk-averse)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

D
iff

er
en

ce
 in

 S
ha

re
 p

ur
ch

as
in

g

2 4 6
Price (GHS)

Difference (BDM - TIOLI)

(b) Tercile 2
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(c) Tercile 3 (least risk-averse)
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Notes: These figures plot the difference between the share of BDM subjects and the share of TIOLI subjects
agreeing to purchase at each TIOLI price (GHS 2, 4, 6), separately by tercile of risk aversion. The regres-
sion includes the standard set of household controls and our measure of ambiguity aversion, described in
Appendix B.
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Figure A11: Heterogeneity in BDM–TIOLI gap across relevant observables

(a) Levels
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(b) Differences
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Difference: Yes vs. No or Top Tercile vs. Bottom Tercile

Notes: These figures compare the average BDM-TIOLI gap (percentage point difference in shares purchas-
ing, averaged over the three TIOLI prices) in different sub-groups. For binary observables, we compare the
two levels of the variable. For continuous observables, we divide the sample into terciles and compare the
top and bottom terciles. The top panel shows the level of the gap for the two sub-groups; a more negative
number indicates a larger BDM gap. The bottom panel shows the difference in the gap between the two
groups; a positive number that the BDM-TIOLI gap is narrower among the “Yes” or “Top Tercile” subgroup
than among the “No” or “Bottom Tercile” subgroup. “Child age 0-5 with diarrhea in prev. 2W” is limited
to respondents with one or more children age 0-5. For “Top or bottom tercile of E. coli” and “Top or bot-
tom tercile of turbidity” the top tercile category refers to the highest levels of E. coli and highest levels of
turbidity, respectively, i.e., the poorest quality water.
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Figure A12: Comparison of BDM Sub-treatments
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Notes: The standard, anchoring and marketing treatments are described in detail in the text. 607 obser-
vations total, of which 212 are standard BDM, 199 are marketing BDM and 196 are anchoring BDM. All
treatments were randomized at the compound (extended family) level.
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Figure A13: Comparison of TIOLI Sub-treatments
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Notes: This graph plots demand for the filter at each take-it-or-leave-it price, for each TIOLI sub-treatment.
The random, anchoring and standard sub-treatments are described in detail in the text. Each treatment was
randomized at the compound level. For the standard and anchoring TIOLI treatments, the price was also
randomized at the compound level. For the random TIOLI treatment, the price was drawn by individual
respondents. 658 observations, of which: standard 217 (GHS2 91, GHS4 70, GHS6 56); random 225 (GHS2
87, GHS4 75, GHS6 63); anchoring 216 (GHS2 68, GHS4 79, GHS6 69).
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