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Abstract 
It is standard in the literature on training to use wages as a sufficient statistic for productivity. But there are 
many reasons why wages and productivity may diverge. This paper is part of a smaller literature on the effects 
of work-related training on direct measures of productivity. We construct a panel of British industries between 
1983 and 1996 containing training, productivity and wages. Using a variety of econometric estimation 
techniques (including system GMM) we find that training is associated with significantly higher productivity. 
Raising the proportion of workers trained in an industry by one percentage point (say from the average of 10% 
to 11%) is associated with an increase in value added per worker of about 0.6% and an increase in wages of 
about 0.3%. Furthermore, we find that the magnitude of the impact of training on wages is only half as large as 
the impact of training on productivity, implying that the existing literature has underestimated the importance of 
training. We also show evidence using complementary datasets (e.g. from individuals) that is suggestive of 
externalities of training and imperfect competition.  
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1. Introduction 
 

It is a widely-held view that Britain needs to increase work-related training to 

improve long-term economic performance and address the “skills gap”.1 

Despite the policy interest and the huge economics literature on human 

capital there are hardly any papers that examine the impact of work-related 

training on direct measures of productivity. The primary contribution of our 

paper is to provide such evidence for the first time in the UK and for the first 

time anywhere over a long period (about 14 years). Analysis of the impact of 

training on productivity has focused almost entirely on estimating the impact of 

training on wages. Most studies looking at the private return to work-related 

training find that training results in workers receiving higher real wages2.  

 

Although these studies are informative, they only tell half the story as they 

ignore the impact on the employer’s productivity. The relationship between 

wage increases and productivity gains can vary according to the structure of 

the labour and product markets and according to who actually pays the costs 

of training. In the simplest neoclassical view of the labour market where the 

market is perfectly competitive wages will be equal to the value of marginal 

product. Thus the wage can be taken as a direct measure of productivity. This 

simple relationship can break down for many reasons. For example, in 

Becker’s model of specific human capital the employer will pay for training so 

there should be no effect of completed training spells on observed wages 

even though there may be a large impact on productivity3. 

                                            
1 See Green and Steedman (1997) or National Skills Task Force (1998). In the December 2003 Pre-
Budget Report, the British Chancellor justified the extension of the Employer Training Pilots in order 
to help improve the skills gap and UK productivity.  
(http://www.hm-treasury.gov.uk/media//2E3BD/03_Meeting%20the%20Pro_EF.pdf) 
 
2 See Greenhalgh and Stewart (1987), Booth (1991, 1993) or Blundell et al (1996) for UK evidence. US 
studies using panel data include Lillard and Tan (1992), Lynch (1992), Blanchflower and Lynch (1992) 
and Bartel and Sicherman (1999).  Winkelmann (1994) uses German data and Bartel (1995) looks 
within a large US manufacturing company. 
3 There are many other reasons for a wedge between productivity and wage in a competitive labour 
market. First, employees may receive non-pecuniary benefits from training.  Second, workers may 
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If the labour market is characterised by imperfect competition then the strict 

link between wages and productivity is usually broken. Employees can find 

themselves being paid less (or more) than their marginal revenue product. 

Nevertheless it is still the case that conditional on a given degree of rent-

sharing or monopsony power increases in wages have to be paid out of 

productivity gains. Therefore we can assert the general principle that these 

real wage increases should provide a lower bound on the likely size of 

productivity increases. In practice the productivity gains are likely to be higher 

than this. For instance, in a labour market with frictions and some wage 

compression (e.g. from a binding minimum wage) there will be productivity 

gains even from general training that are not passed on to the employee in 

terms of wages but are only reflected in direct measures of productivity4. 

Similar results can be found in some bargaining models (e.g. Booth et al, 

1999). 

 

There exist a small number of empirical papers that relate firm productivity to 

a measure of training5. Although a positive correlation is generally found, it is 

very difficult to interpret because the training measures are only measured at 

a single point of time and could be picking up many unobservable firm specific 

factors correlated with both training and productivity. Black and Lynch (2001) 

use an establishment training survey at two points of time. In the cross section 

they identified some effects of the type of training on productivity, but they 

found no significant association when they controlled for plant specific effects.  

Ichinowski et al (1997) investigate what affects productivity in a panel of US 

                                                                                                                             
implicitly pay the costs of a training scheme the form of lower wages whilst being trained, which then 
rise after training is completed - so we might see a greater increase in observed wages than in 
productivity. Third, employees’ wages could be lower during training because they are not contributing 
to firm productivity whilst actually being trained. Fourth, there may be deferred compensation 
packages where the employee’s remuneration is ‘backloaded’ towards later post-training years as a 
means of ensuring loyalty and/or effort early in the employee’s tenure (e.g. Lazear, 1979). 
4 See Acemoglu and Pischke (1999, 2003). 
5 Black and Lynch (1996), Bartel (1994), Barrett and O’Connell (2001), de Koning (1994), Boon and 
ven der Eijken (1997) and Ballot and Taymaz (1999)  have objective productivity measures. Bartel 
(1995), Holzer (1990) and Barron, Black and Lowenstein (1989) and Krueger and Rouse (1998) use 
subjective measures of productivity. Holzer et al (1993) do find effects of changes in productivity on 
changes in one measure of quality – the scrap rate.  
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steel finishing mills. After controlling for fixed effects they found a role for 

training only in combination with a large variety of complementary human 

resource practices.  Carriou and Jeger (1997), Ballot et al (1998) and Delame 

and Kramarz (1997) use French firm level panel data to look at the effects of 

training on value added and find positive and significant effects. Although 

these studies are broadly consistent with our own they do not fully exploit the 

potential of their panel data by allowing training to be a choice variable6.  

 

Our contribution in this paper is to advance the literature in at least three 

ways. Black and Lynch (2001) emphasise the problems of trying to identify the 

effects of training in a short panel (they have only two separate training 

observations). Although unobserved heterogeneity can be controlled for 

through fixed effects with only two periods, attenuation biases due to 

measurement error are exacerbated. To address this, we build a panel that 

contains up to fourteen consecutive years of training data. Second, we 

explicitly allow training to be a choice variable by using General Method of 

Moments (GMM) estimators developed to deal with endogenous variables in 

production functions. Thirdly, we combine estimation of the productivity effects 

of training with estimation of the wage effects of training. Although 

comparisons between the production function and the wage equation are 

becoming more common for other worker characteristics such as gender and 

human capital this is the first time the strategy has been used for training7. In 

principle this allows us to examine whether trained workers are paid the value 

of their marginal product. 

 

We conduct our main analysis of the effects of training at the industry level, 

rather (although we perform estimation at the firm and individual level for 

comparative purposes). There is simply no alternative to this strategy if one 

wishes to use long time series of training and productivity information. The 

                                            
6 See Greenhalgh (2002) for a much more extensive review of the French and UK literature in this area.  
7 Hellerstein, Neumark and Troske et al (1999), Hellerstein and Neumark (1999), Haegler and Klette 
(1999) and Jones (2001) examine the differential impact of human capital and gender on wages and 
productivity.  A recent study which utilises our methodology and looks at this question using a panel of 
French and Swedish firms is Ballot et al (2001, 2002). They find that in both France and Swedish firms 
appropriate a high proportion of the returns to training (82 and 67 per cent respectively).  
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only publicly available firm level panel data in the UK is a sample of about 119 

firms in the late 1990s with only very basic training information (a concise 

investigation of this is presented in Appendix B). Aggregation has pros and 

cons that are discussed in the paper. On the positive side, if there are 

important spillovers to training within an industry (e.g. through a faster rate of 

innovation) then a firm level analysis will potentially miss out these linkages 

and underestimate the return to human capital8. On the negative side, there 

may be aggregation biases at the sectoral level that could lead to negative or 

positive biases on the training coefficient. We follow Grunfeld and Griliches 

(1960) in arguing that the pros outweigh the cons. 

 

The format of the paper is as follows. Section 2 describes the simple 

economic models of productivity and wages that we will estimate and section 

3 details the econometric strategy. The data are described in section 4 and 

the results are presented in section 5. Section 6 offers some concluding 

comments. The Appendices contain more information on the data and some 

additional experiments. Our main result is that we find a statistically and 

economically significant effect of training on industrial productivity. A 1 

percentage point increase in training is associated with about a 0.6 percent 

increase in productivity and a 0.3 per cent increase in hourly wages. The 

productivity effect of training is twice as large as the wage effect, implying that 

existing studies have underestimated the benefits of training by focusing on 

wages.  

 
 

                                            
8 For example, O’Mahony (1998) finds that the coefficient on labour skills in a production function is 
more than twice that assumed by traditional growth accounting from relative wages. Other recent 
papers which have looked at the impact of human capital on directly measured productivity include 
Moretti (2004) on U.S. data and Haskel, Hawkes and Pereira (2003) on U.K. data. 
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2. A Model of training and productivity 

To see our approach assume that we can characterise a representative plant 

in an industry by a Cobb-Douglas production function written in value added 

form9  

 
βα KALQ =                                                    (1) 

 

where Q is value added, L is effective labour input allowing for quality and 

quantity dimensions, K is capital and A is a Hicks neutral efficiency parameter. 

 

We consider that trained workers are more productive than untrained workers, 

so that effective labour input can be written as 

 

        TU NNL γ+=                                                (2) 

 

where NU are the number of untrained workers, NT are trained workers and γ is 

a parameter which, if trained workers are more productive than non-trained 

workers, will be greater than unity. The total number of workers, N, is equal to 

the sum of trained and untrained workers. Substituting equation (2) into 

equation (1) gives: 
βααγ KNTRAINAQ ))1(1( −+=                                     (3) 

 

Where TRAIN = NT/N, is the proportion of trained workers in an industry. 

Taking natural logarithms, we obtain 

 

KNTRAINAQ lnln))1(1ln(lnln βαγα ++−++=                   (4) 

 

This could be estimated by non-linear least squares. If (γ−1)TRAIN is “small” 

we can use the approximation ln(1+x) = x and re-write the production function 

as10: 
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KNTRAINAQ lnln)1(lnln βαγα ++−+=                                     (5) 

 

If the industry exhibits constant returns to scale (i.e. α+β=1) then equation (5) 

can be re-written in terms of labour productivity as 

 

)/ln()1)(1(ln)/ln( NKTRAINANQ βγβ +−−+=                                 (6) 

 

If the trained are no more productive than the untrained (γ =1) then the 

coefficient on TRAIN will be zero.  

 

This method can be easily extended to a larger number of different types of 

heterogeneous workers in the labour quality index. If we index the discrete 

type of labour by k  (where until now we have discussed k solely in terms of 

the training status of workers) then equation (4) can be written 

 

KNNNAQ kk
k

lnln)]/)(1[(1ln(lnln βαα γ ++−++= ∑                     (7) 

 

Empirically we will allow for many other dimensions of labour quality such as 

education, occupation, age, tenure and gender11.  There are a large number 

of other influences on productivity captured in A so we allow for differential 

hours, worker turnover rates, innovation (as proxied by research and 

development expenditures), regional composition and the proportion of small 

firms. Labeling these factors as X, imposing constant returns and using the 

log approximation the basic production function becomes: 

                                                                                                                             
9 This should be viewed as a first order approximation to a more complicated functional form. It is 
straightforward to generalize this to more complex functional forms such as translog and some 
experiments are included in the empirical results.   
10 The results were estimated both by non-linear least squares and by least squares using the 
approximation. The results did not significantly differ (see Table 3), so the more convenient log linear 
approximation is used for the baseline results. 
11 We follow Hellerstein et al (1999) by entering these variables in linear proportions. One could allow 
a larger number of cells for interactions of the labour quality variables (e.g. the proportion of educated 
men – a two way interaction, or the proportion of educated men who are trained –a three way 
interaction). We experimented with some breakdowns like this on the training variable, but LFS cell 
sizes by industry were generally not large enough. 
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XNKNNNQ kk
k

')/ln()]/)(1[()1()/ln( δββ γ ++−−= ∑                             (8) 

 

The wage equation that we estimate parallels the productivity equation in (8). 

We view the wage equation as more of a descriptive regression than the 

structurally derived production function. Under competitive spot markets for 

labour relative wages should equal the relative marginal productivities of 

workers of different types. This is because if the relative productivity of trained 

workers (γ ) exceeded the relative wages of trained workers then employers 

would only employ trained workers (Hellerstein et al, 1999).  

 

Consider the wage bill (W) for the representative plant in an industry. Again, 

take the simplest model where there are only two types of workers: trained 

workers paid average wage wT and untrained workers paid average wage 

wNT. Relative wages are λ = wT /wNT. By definition, 

 

W = wNT(N - NT) + λ wNTNT     = wNT(N+( λ-1) NT)                          (9) 

 

In logarithms, the average wage (w) is 

 

))1(1ln()/ln(ln TRAINaNWw −++== λ                                     (10) 

 

where a = lnwNT 

 

Clearly the coefficient on training can be used to recover the relative wage 

mark up associated with training (λ) and then compared to the relative 

productivity effect (γ). Parallel to the productivity equation we will allow for 

multiple type of labour quality and other factors to influence wages. The 

empirical wage equation to be estimated is therefore12:  

                                            
12 One could argue that firm variables such as capital intensity and R&D should be excluded from the 
wage equation under competitive labour markets. However, these variables are typically quite 
informative in wage equations either because they are picking up some measure of unobserved labour 
quality (Hellerstein and Neumark, 1999) or because of departures from perfect competition. In either 
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XKNNw ww
kk

k
'ln)]/)(1[(ln δβλ ++−= ∑                             (11) 

 

3 Econometric Modeling Strategy 

 

The basic equation we wish to estimate can be written in simplified form as  

ititit uxy += θ                                                          (12) 

where y is Q/N, and x is a vector of (suspected endogenous) variables 

including training. Subscript i indicates the representative firm in an industry t 

is time and θ is the parameter of interest. Assume that the stochastic error 

term, uit, takes the form 

 

ititit

ittiitu
υρωω
ωτη

+=
++=

−1

                                                   (13) 

 

The tτ  represent macro economic shocks captured by a series of time 

dummies, iη is an individual effect, and itυ  is a serially uncorrelated mean 

zero error term. The other element of the error term, itω  is allowed to have an 

AR(1) component (with coefficient ρ ) which could be due to measurement 

error or slowly evolving technological change  Substituting (13) into (12) gives 

us the dynamic equation 

 

ittiitititit xxyy υτηπππ +++++= −−
**

13211                           (14) 

 

The common factor restriction (COMFAC) is 321 πππ −= . Note that 

t
*τ = 1−− tt ρττ  and ηi*= (1- ρ )ηi . 

 

                                                                                                                             
case omitting such variables is likely to cause bias on the training variable and our baseline 
specifications will include them (although we also present experiments were they are dropped). 
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In main results section we present several econometric estimates of 

production functions (random effects, within groups and GMM). The most 

rigorous approach follows that recommended by Blundell and Bond (2000) 

that uses a “system GMM” approach to estimate equation (14) and then 

imposes the COMFAC restrictions by minimum distance. We now turn to 

describing the GMM approach in more detail. 

 

How should equation (14) be estimated? If training is strictly exogenous and 

there are no dynamics (i.e. ρ = 0), then the only problem with OLS estimation 

of (12) is the presence of the individual effects, iη . If these individual effects 

are uncorrelated with xit then the random effects estimator is unbiased and 

efficient. If the individual effects are correlated with xit but remain strictly 

exogenous then although the random effects estimator is biased, the within 

group estimator will be unbiased. 

 

If we allow training to be endogenous (i.e. allowing training decisions to react 

to shocks to current productivity) we will require instrumental variables. In the 

absence of any obvious natural experiments we consider moment conditions 

that will enable us to construct a GMM estimator for equation (14).  A common 

method would be to take first differences of (14) to sweep out the fixed effects:  

 

ittitititit xxyy υτπππ ∆+∆+∆+∆+∆=∆ −− 13211                                      (15) 

 

Since  itυ  is serially uncorrelated the moment condition  

0)( 2 =∆− ititxE υ                                                           (16) 

ensures that instruments dated t-2 and earlier13 are valid and can be used to 

construct a GMM estimator for equation (14) in first differences (Arellano and 

Bond, 1991). A problem with this estimator is that variables with a high degree 

of persistence over time (such as capital) will have very low correlation 

between their first difference ( itx∆ ) and the lagged levels being used an 

                                            
13 Additional instruments dated t-3, t-4, etc. Become available as the panel progresses through time.  
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instrument (e.g. 2−itx ). This problem of weak instruments can lead to 

substantial bias in finite samples.  

 

Blundell and Bond (1998) point out that under a restriction on the initial 

conditions another set of moment conditions are available14: 

 0))(( 1 =+∆ − itiitxE υη                                                         (17) 

This implies that lags of the first differences of the endogenous variables can 

be used to instrument the levels equation (14) directly. The econometric 

strategy is then to combine the instruments implied by the moment conditions 

(16) and (17). We stack the equations in differences and levels (i.e. (14) and 

(15)). We can obtain consistent estimates of the coefficients and use these to 

recover the underlying structural parameters in (12).  

 

The estimation strategy assumes the absence of serial correlation in the 

levels error terms ( itυ )15. We report serial correlation tests in addition to the 

Sargan-Hansen test of the over-identifying restrictions in all the GMM results 

below16. 

 

This GMM “system” estimator has been found to perform well in Monte Carlo 

simulations (Blundell and Bond, 1998) and in the context of the estimation of 

production functions (Blundell and Bond, 2000). The procedure should also be 

a way of controlling for transitory measurement error (the fixed effects control 

for permanent measurement error). Random measurement error has been 

found to be a problem in the returns to human capital literature, typically 

generating attenuation bias (see Card, 1999). 

                                            
14 The conditions are that the initial change in productivity is uncorrelated with the fixed effect  

0)( 2 =∆ iiyE η  and that initial changes in the endogenous variables are also uncorrelated with the 

fixed effect  0)( 2 =∆ iixE η                                                       
15 If the process is MA(1) instead of MA(0) then the moment conditions in (16) and (17) no longer 
hold. Nevertheless 0)( 3 =∆− ititxE υ and 0))(( 2 =+∆ − itiitxE υη  remain valid so earlier dated 
lags could still be used as instruments. This is the situation empirically with the wage equations. 
16 These are based on the first differenced residuals so we expect significant first order serial 
correlation but require zero second order serial correlation for the instruments to be valid. If there is 
significant second order correlation we need to drop the instruments back a further time period (this 
happens to be the case for the wage equation in the results below). 
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In order to assess the importance of biases associated with fixed effects and 

endogeneity we will estimate random effects, within groups and GMM 

estimates in the results section.  

 

Finally, consider two more issues which are harder to deal with: aggregation 

and training stocks vs. training flows. Estimation at the three digit industry 

level has advantages but also disadvantages relative to micro-level 

estimation. The production function in equation (1) at the firm level describes 

the private impact of training on productivity. However, many authors, 

especially in the endogenous growth literature (e.g. Aghion and Howitt, 1998), 

have argued that there will be externalities to human capital acquisition. For 

example, workers with higher human capital are more likely to generate new 

ideas which may spill over to other firms17. If spillovers are industry specific 

this implies that there should be additional terms added to equation (5) 

representing training in other firms (e.g. the mean number of trained workers 

in the industry). In this case the coefficient on training in an industry level 

production function should exceed that in a firm level production function18. 

Secondly, grouping by industry may smooth over some of the measurement 

error in the micro data and therefore reduce attenuation bias.  

 

On the negative side, there may be aggregation biases in industry level data. 

A priori it is not possible to unambiguously sign these biases. We expect that 

the fixed effects will control for some of the problem. For example, we are 

taking logs of means and not the means of logs in aggregating equation (4), 

but so long as the higher order moments of the distributions are constant over 

time in an industry then they will be captured by a fixed effect19. If the 

coefficients are not constant across firms in equation (4), but are actually 

random, this will also generate higher order terms at the industry level. In the 

                                            
17 Although there are many papers which examine externalities of R&D (e.g. see the survey by 
Griliches, 1992) and a few which look at human capital (Acemoglu and Angrist, 2000 and Moretti, 
1999) there are none that focus on training spillovers.  
18 For the same argument in the R&D context see Griliches (1992) 
19 If they evolve at the same rate across industries they will be picked up by the time dummies. 
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empirical results we experiment with including higher order moments and 

allowing the coefficients to vary across cross sectional units. 

 

Turning to the problem of training stocks and flows, note that the model in 

equation (1) assumes that we know the stocks of trained workers in an 

industry. What we actually have in the data is an estimate of the proportion of 

workers in an industry who received training in a given 4-week period (the 

training flow). Since individuals are sampled randomly over time in the LFS 

this should be an unbiased estimate of the proportion of people in training in 

given industry in a given year20. As an alternative to using the flow we 

calculate a stock of training in an analogous way to using investment flows to 

calculate a capital stock through the perpetual inventory method (the main 

form of depreciation is the turnover rate). This is described in the Data 

Appendix. 

 

4. Data Description  

The database we construct combines several sources (see Data Appendix for 

full details). The critical individual level source is the individual level UK 

Labour Force Survey (LFS) which contained about 60,000 households per 

year. Most importantly, the LFS has a consistent training measure since 1984 

as well as detailed information on skills, demographics, hours worked, tenure 

and wages. We work with this information aggregated by broadly three digit 

industries. The LFS only started asking questions on wages at two points of 

time in 1997 (and at one point of time in 1992 when the panel was set up). We 

present some individual level panel wage regressions at the end of section 5 

for comparison. 

 

The second major dataset we use is the Annual Census of Production 

(ACOP). This gives production statistics on capital, wages, labour and output 

                                            
20 If there are many multiple training spells in the month we will underestimate the proportion of 
employees who are being trained. If Spring (the LFS quarter we use) is a particularly heavy training 
season then we will overestimate the proportion being trained in a year. These biases are likely to be 
small and offsetting. 
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for industries in the production sector (manufacturing, mining and utilities). For 

the services industries we drew on the OECD’s ISDB data. 

 

There was a change in SIC classification in 1992 which forced us to 

aggregate some of the industries and prevented us from using some of the 

industries after the change. Additionally, we insisted on having at least 25 

individuals in each cell in each year. After matching the aggregated individual 

data from LFS we were left with 94 industry groupings over (a maximum of) 

14 years.  
 

The main LFS training question was, “over the 4 weeks ending Sunday … 

have you taken part in any education or training connected with your job, or a 

job that you might be able to do in the future?”21 The average proportions of 

employees undertaking training grew steadily from about 8% in 1984 to 14% 

in 1990 where it stabilized for the next 6 years. Most of this growth was 

upgrading within industry rather than between industries22.  

 

Figure 1 gives the scatterplot of labour productivity (log real value added per 

worker) against training propensity and Figure 2 repeats the exercise for log 

hourly wages.  Unsurprisingly training has a strong positive correlation with 

both variables, but the association is somewhat weaker for wages than for 

productivity.  

 

The outliers in both graphs tend to be in the service sector. Unfortunately, the 

published series for real value added and capital stocks are rather unreliable 

in the service sector. For example in banking and financial services measured 

real value added per person declined every year between 1983 and 1996.  

Given the poor quality of the service sector production data we reluctantly 

decided to focus the econometric part of the analysis on the production side of 

the economy. This is still a substantial share of the economy about 50% of 

                                            
21 Unfortunately it is not possible to separate out “education” from “training”. 
22 There is also a question of the length of the training spell, but this was only asked in particular years 
and there were too many missing values to use it as a separate regressor. Median spell length was two 
weeks and the mean higher. 
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private sector net output in 1986.23 Until robust measures of service sector 

productivity are developed there is simply no alternative to the empirical 

strategy of focusing on the production sector. 

 

Care must be taken in interpreting the scatterplots presented in Figures 1 and 

2 as they say nothing about the causal impact of training on productivity or 

wages. Table A1 in the Data Appendix shows that high training industries are 

characterized by higher fixed capital intensity, more professional workers, 

more educated workers and higher R&D. We need to turn to an explicit 

econometric model to investigate whether there is a causal effect of training 

on productivity and this forms the focus of the rest of the paper. 

 

5. Results 

5.1 Baseline Industry Results 

In Table 1 we present the basic results for the industry-level regressions 

treating all variables as exogenous. The first three columns have productivity 

(log real value added per head) as the dependent variable and the last three 

columns have wages as the dependent variable.  

                                            
23  This lead to the loss of only 91 observations and the results are robust to including the service sector 
in the unweighted regressions. We generally weight the regressions by the number of LFS observations 
in order to reduce sampling variability. In the weighted regressions including the service sector does 
have more substantial effects on the results because of their large employment shares. Full sets of these 
results are available on request from the authors. 
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Figure 1: Labour Productivity and Training in British Industries 
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Figure 2:  Wages and Training in British Industries 
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Notes to Figures 1 and 2 
Each point is an industry-year observation; the OLS regression line has a slope of 4.91 for productivity 

and 2.95 for wages; labour productivity is  log(Value added per employee); Wages are log hourly wages 

from the Census of Production (wages) and the LFS (hours); training  is the proportion of workers 

involved in training from the LFS 
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The first two columns are estimated by random effects; the only difference is 

that column (1) does not include the occupational controls. This makes some 

difference to the “no qualifications” variable which has a significantly negative 

association with productivity in the first column, but is insignificantly different 

from zero in the second column – the occupational proportions (especially the 

professional/managerial category)) do a better job at proxying for workforce 

skill than education24. The variables generally take their expected signs, 

although it is clear that there is some loss of precision when a full set of fixed 

effects is added in column (3). Capital per worker is strongly correlated with 

productivity, although the coefficient is lower (0.21 to 0.25) than capital’s 

share of value added which is about 30%. Worker turnover has a significantly 

negative association with productivity and R&D a significantly positive 

correlation. Younger workers (aged between 16 and 24) are significantly less 

productive than the 35-45 year old group. 

 

Most importantly for our purposes, training has a statistically significant and 

economically important effect on productivity according to Table 1. The 

magnitude of the coefficient falls as we move to the more rigorous 

specification that controls for fixed effects, but the change is not dramatic. The 

estimates imply that raising the training variable by 1 percentage point (say 

from the 1996 economy wide mean of about 14% to 15%) is associated with 

an increase in productivity of about 0.7%. We will return to the plausibility of 

the magnitude of these effects in sub-section 5.3. 

 

The last three columns repeat the specifications but instead use ln(earnings) 

as the dependent variable. The most interesting contrast for our purpose is 

the coefficient on training. As with productivity, training enters the earnings 

equation with a consistently positive and significant coefficient across all three 

columns. The magnitude of the coefficient in the wage equation is much lower 

                                            
24 This conclusion does not change if we break down the qualifications into four groups. Machin et al 
(2003) adopt a much finer classification of education using post 1992 LFS data where there are a larger 
number of observations. Exploiting the regional and industry aspect of the aggregated data they find 
some role for college proportion, even in fixed effect specifications.  
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than in the productivity equation – just under half the size, in fact. On face 

value, then, estimating the returns to training solely on the basis of wage 

equations would generate an under-estimate of the importance of work-

related training25.  

 

Turning to the other variables in the wage equation, the signs of most of the 

variables are the same as those in the productivity equations, although there 

are some differences. As expected, earnings are significantly higher in more 

capital intensive, hours intensive and highly skilled industries.  The R&D 

coefficient is surprisingly negative (although insignificantly different from zero), 

but this turns out to be because of mis-specified dynamics – including longer 

lags of R&D demonstrates there is actually a positive correlation of technology 

with wages26 (see Table 2). 

 

An important concern with Table 1 is that we do not allow for the endogeneity 

of training or other suspected endogenous variables. To deal with this we 

implemented the GMM approach described in section 3 above. Table 2 

contains a summary of the main results27. All the same variables are included 

in these regressions as in Table 1, but we report only the key coefficients to 

preserve space.  

                                            
25 Explicit tests of the equality of the coefficients on training in the wage and productivity equations 
was rejected at the .10 level for training (p-value = .068). This calculation allows for correlation 
between the wage equation and the production function using Seemingly Unrelated Regression (note 
that jointly estimating by SUR is no more efficient than OLS in this context because all independent 
variables enter both equations). The equality of coefficients on R&D, turnover and capital intensity was 
also rejected at the 0.05 level. 
26 Consistent with the findings of inter alia Bartel and Sicherman (1999) 
27 Data Appendix Table B2 has more detailed results and even more detailed specifications are 
available from authors or in Dearden et al (2000) 
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Table 1 Training, Productivity and Wages 

 (1) (2) (3) (4) (5) (6) 
 Ln(Value added per worker) Ln(Wages) 
 Random  

Effects 
Random 

Effects 
Within Groups Random 

Effects 
Random 

Effects 
Within Groups 

 
       
Training .788 

(.168) 
.700 

(.169) 
.696 

(.201) 
.425 

(.117) 
.344 

(.119) 
.365 

(.157) 
log(capital/worker) .252 

(.020) 
.244 

(.019) 
.212 

(.053) 
.058 

(.012) 
.051 

(.012) 
.069 

(.035) 
log(hours/worker) .184 

(.181) 
.196 

(.181) 
.275 

(.207) 
.274 

(.123) 
.272 

(.126) 
.310 

(.116) 
Lagged R&D 
Intensity 

1.628 
(.430) 

1.390 
(.428) 

1.251 
(.662) 

-.212 
(.284) 

-.356 
(.281) 

-.942 
(.717) 

Worker Turnover -.632 
(.206) 

-.683 
(.207) 

-.430 
(.332) 

.132 
(.143) 

.070 
(.145) 

.163 
(.202) 

Occupations: Base group is manual workers 
Managers   .487 

(.123) 
.282 

(.131) 
 .324 

(.084) 
.195 

(.099) 
Clerical  .366 

(.174) 
-.076 
(.190) 

 .161 
(.121) 

-.126 
(.121) 

Personal/security  -.049 
(.355) 

-.522 
(.371) 

 .504 
(.250) 

.204 
(.223) 

Sales people   .443 
(.276) 

-.078 
(.281) 

 -.037 
(.191) 

-.328 
(.190) 

No Qualifications -.251 
(.096) 

-.036 
(.109) 

.107 
(.096) 

-.145 
(.065) 

-.033 
(.075) 

.101 
(.069) 

Experience: Base Group is Age 35-45 
Age 16-24 -.579 

(.170) 
-.461 
(.172) 

-.390 
(.175) 

-.315 
(.118) 

-.259 
(.121) 

-.153 
(.119) 

Age 25-34  -.341 
(.155) 

-.282 
(.158) 

-.314 
(.171) 

-.198 
(.109) 

-.155 
(.110) 

-.196 
(.111) 

Age 45-54 -.058 
(.158) 

-.042 
(.156) 

-.104 
(.160) 

-.139 
(.110) 

-.148 
(.111) 

-.150 
(.101) 

Age 55-64 .178 
(.190) 

.244 
(.192) 

.142 
(.237) 

-.263 
(.133) 

-.263 
(.136) 

-.271 
(.138) 

Male .037 
(.097) 

.114 
(.099) 

-.116 
(.128) 

.293 
(.064) 

.364 
(.065) 

-.112 
(.078) 

Small Firm .068 
(.112) 

.016 
(.113) 

.005 
(.127) 

-.118 
(.076) 

-.126 
(.076) 

-.056 
(.074) 

       
Observations 968 968 968 968 968 968 
Estimation Period 1984-1996 1984-1996 1984-1996 1984-1996 1984-1996 1984-1996 

 
Notes:  
Standard errors (robust to heteroskedacity) in parentheses under coefficients. Bold typeface indicates 
that the variable is significant at the 5% level. Variables that are significant at the 5% level are in bold. 
All regressions include a full set of regional dummies (10), time dummies (12) and tenure dummies (6); 
observations are weighted by number of individuals in an LFS industry cell. Random effects are 
estimated by GLS. Within groups estimated by least squares dummy variables (85 industries).  
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In column (1) we present the production function and in column (2) we present 

the wage equation. The GMM estimates tell a similar story to the within 

groups estimates. Training has a positive and significant impact on both 

productivity and wages, although the training coefficient in the production 

function remains almost twice the size of the coefficient in the wage equation 

(0.60 vs. 0.35). There are some minor changes to the other coefficients – the 

coefficient on capital intensity has risen to 0.33 in the production function, the 

R&D coefficient is positively signed in the wage equation and the coefficient 

on hours is somewhat larger in magnitude than in Table 1.  

 

The diagnostics reported at the base of the table are also satisfactory – there 

is no sign of second order serial correlation (in the first differences residuals) 

and the Sargan test of over-identifying restrictions does not reject. Note that 

the wage regression uses instruments dated t-3 and before in the differenced 

equation (and dated t-2 in the levels equation). This is because there were 

some signs of significant second-order serial correlation using t-2 dated 

instruments in the wage equation which invalidates the IVs (we dropped one 

period in order to be able use the longer lags in estimation). Using the (invalid) 

instruments on the longer time period gave a coefficient (standard error) on 

training of 0.141(0.067) in the wage equation28. 

                                            
28 Using the shorter time period with longer dated instruments in the production function gave a 
coefficient (standard error) on training of 1.043(.325). See Table B2 in the Appendix for full details. 
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Table 2 Production Functions and Wage Equations estimated by GMM 
 
 (1) (2) 
 ln(real value added per worker) Ln(Wages) 
Training .602 

(.181) 
           .351 
          (.106) 

log(capital/worker) .327 
(.016) 

.106 
(.011) 

log(hours/worker) .498 
(.064) 

.489 
(.027) 

Lagged R&D 
Intensity 

1.905 
(.262) 

.443 
(.271) 

Proportion employees who are 
professionals or managers  

.306 
(.068) 

.160 
(.034) 

   
Autocorrelation coefficient 
(ρ) 

.741 
(.014) 

.797 
(.013) 

LM1(d.f.) 
[p-value] 

-4.892(85) 
[0.00] 

-6.053(85) 
[0.00] 

LM2(d.f.) 
 [p-value] 

.-.940(85) 
[.347] 

-1.44(85) 
[.158] 

Sargan(d.f.) 8.819(121) 11.83(136) 
Instruments (TRAIN)t-2,t-3, Ln(Q/N)t-2,,t-3,  

ln(Hrs/N)t-2,t-3 ln(K/N)t-2,t-3  in 
differenced equations; ∆(TRAIN)t-1, , 
∆ln(Hrs/N)t-1  ∆ln(K/N)t-1 in the levels 
equations. 

(TRAIN)t-3,..,t-5, Ln(Q/N)t-3,..,t-5,  
ln(Hrs/N)t-3,...t-5, ln(K/N)t-3,...t-5  in 
differenced equations; ∆(TRAIN)t-2,  
∆ln(Hrs/N)t-2  ∆ln(K/N)t-2 in the levels 
equations. 

 
Estimation Period 1984-1996 1985-1996 

Observations 898 883 
 

Notes: 
Estimation by GMM-SYS in Arellano and Bond (1998) DPD-98 package written in GAUSS, one step robust 
estimates reported; all regressions include the current values of all the variables in Table 1 columns (3) and (6) (i.e. 
turnover, other occupations, qualifications, age, tenure, gender, region, firm size and time dummies). Capital 
intensity, training, hours and lagged productivity are always treated as endogenous. The other variables are 
assumed weakly exogenous. One step standard errors (robust to arbitrary heteroskedacity and 
autocorrelation of unknown form) in parentheses under coefficients (variables significant at 5% level 
are in bold); LM1(2) is a Lagrange Multiplier test of first (second) order serial correlation distributed N[1,0] 
under the null (see Arellano and Bond, 1991); Sargan is a Chi-squared test of the over-identifying restrictions; 
observations weighted by number of individuals in an LFS industry cell. Full details in Table B2. 
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Table 3 Robustness Tests of the Production Function 
 
Row Robustness test NT Training coefficient 

(standard error) 
1 Original training coefficient in production sector, Table 1 

column (3) 
968  0.696(0.201)

2 Using “stock” of trained workers instead of flows 968 0.775(.189) 
  

3 Using the balanced panel only to check for bias associated with 
finite T (Nickell, 1981) 

572 0.508(0.289) 

4 Conditioning on wage in productivity regression (to control for 
any residual unobserved worker quality) 

968 Training: 
0.659(0.219) 
Wage coeff.: 
0.099(0.130) 

5 Including service sectors 1059 0.727(0.206) 
6 Include union density (only available 1989-96)  547 Training: 

0.603(0.266) 
union: 

 -0.177(0.183) 
7 Allow all industries to have different training coefficients 968 mean of 

heterogeneous 
coefficients: 0.510 

8 Allow non-constant returns 968 0.725(.201) 
9 Estimating a translog production function 968 0.703(.201) 

 
10 Estimation by non-linear least squares 968 0.518(.197) 
11 Estimation on 1993-2001 data (region-industry cells) 1873 0.436(.188) 
 
Notes  
These all use the specification in the third column of Table 1 (unless otherwise specified). Estimation 
by within groups, robust standard errors in parentheses. 
 

 
5.2 Robustness of the Results 
We conducted a large number of robustness tests on the models in these 

tables. Table 3 reports some of these. Given the similarity of the within groups 

and GMM results we performed these tests on the within groups specifications 

of table 1 (column (3)). The first row of Table 3 simply reports the coefficient 

and standard error from this table. Using the stock of trained employees 

instead of the flow (calculated allowing for depreciation due to inter-firm 

turnover) results in very similar results in row 229. Keeping only industries 

                                            
29 The non-fixed effects results were significantly different, but the deviations around the fixed effect in 
the training stock are dominated by the flow, explaining the similarity of the results. In addition to 
using the empirical turnover rates we assumed an exogenous depreciation of training at 40% per annum 
(see Data Appendix). The coefficient was stable to reasonable changes in these parameters (e.g. 
increasing the depreciation rate to 50% p.a. increased the coefficient to 0.81, to 60% to 0.82. 
Decreasing the depreciation rate to 30% reduced the coefficient to 0.70).  
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which had fourteen continuous years of data (balanced panel) in row 3 means 

losing 40% of the observations; the coefficient falls, but the change is not 

significant. The fourth row includes average wages on the right hand side of 

the production function as a measure of unobserved worker quality. Although 

wages have a positive and significant coefficient, the training association 

remains robust.  In row 5 we include all the service sectors, ignoring our 

concerns over data quality. The coefficient on training rises to 0.73 and 

remains significant (although the standard error is higher). 

 

Since training is correlated with unionisation, we could be picking up 

“collective voice” effects in the main results. Union membership is only 

available in LFS since 1989. Despite the loss in sample in row 6, the training 

effect is robust to inclusion of union density (density is insignificantly 

negatively associated with productivity).  In row 7 we allow the training effect 

to be different in each of the 85 industries. The mean of these heterogeneous 

coefficients is close to the pooled results. The next two rows allow for more 

general functional forms relaxing first constant returns (row 8) and then 

estimating a translog production function (row 9). In both cases the training 

coefficient is essentially unchanged. Row 10 gives the results from a non-

linear least squares estimation (equation 8 in section 2) again showing no 

significant difference.  

 

We also compared our results with a recent paper (Machin et al, 2003) that 

has built up similar data to our own covering a more recent period and 

exploiting the larger size of the LFS post 1992 to construct industry by region 

cells. Against these advantages their dataset has a shorter time series 

component (1993-2001) and lacks some of the covariates we use. Re-

estimating identical specifications on their dataset gives an estimate of the 

training association with productivity of 0.436 with a standard error of 0.188 

(see row 11 of Table 3). This is lower, but is still significant and remains well 

within two standard errors of our main results.30 On our dataset we tested 

                                            
30 The specification is identical to table 1 column (3) except we drop the occupational proportions and 
R&D and include employment. On our data this gives a coefficient (standard error) on TRAIN of 
.732(.205).  
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whether there was a tendency for the training coefficient to fall (or rise) over 

time in the production function, but we found it to be stable31. 

 

Does the “wedge” between the wage and productivity effect of training arise 

from specific human capital or imperfect competition? Under most forms of 

imperfect competition, we conjectured that the wedge would be larger in those 

industries where workers were earning less than would be implied by their 

human capital (i.e. inter-industry wage premia were low). This could be 

because the “low paying” industries were monopsonistic with large search 

frictions or because workers are more able to capture the quasi-rents from 

training in the “high paying” industries.  

 

In order to identify such industries we used estimates of inter-industry wage 

premia taken from the US Current Population Survey32. We matched the US 

industries to the UK industries and split the sample at the median sectoral 

wage premia. Allowing an interaction between training and this industry split 

revealed that the wedge between the training effect on productivity and the 

training effect on wages was solely within the “low wage” industries. To be 

precise, including an interaction in the wage equation between training and 

low wage industries gave a coefficient (standard error) of -0.664(0.196) on the 

interaction and 0.531(0.113) on the linear training effect. In the production 

function the interaction was 0.332(0.297) - positive but insignificant. In other 

words, in the “high wage premium” industries there was no significant 

difference between the impact of training on productivity and the impact of 

productivity on wages.  The fact that our results are driven by the wedge in 

low paying sectors is tentative evidence in favour of a monopsony/search 

interpretation.  

 

                                            
31 For example interacting TRAIN with a trend in the production function gave a coefficient of .003 
with a standard error of .044. 
32 Estimating inter industry wage premia from UK wages would have been more problematic as these 
could reflect endogenous influences – US wage setting will be driven by the structural characteristics 
of the industries in question. These US wage inter industry wage premia were generated from 
individual level wage regressions from the 1986 CPS Merged Outgoing rotation files. The wage 
regressions included years of schooling, a quartic in experience, gender, marital status, 
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This evidence is open to the critique that firm specific training may be 

systematically more prevalent in the low wage sectors (although a priori the 

usual view is that “good jobs” are more likely to have more specific skills). 

There are several questions in LFS that could be interpreted as general vs. 

specific training, so we used them to see if the coefficients differed 

significantly with training type - they did not. For example there are questions 

related to off the job training (more general) and on-the-job training (more 

specific). The proportion of off the job training produced a coefficient (standard 

error) of 0.005(0.018) when added to the wage regression and a coefficient 

(standard error) 0.018(0.029) when added to the production function. We view 

this not as any rejection of specific human capital theory per se, but rather 

because the type of human capital is intrinsically difficult to measure. 

Furthermore, the LFS questions are not asked in all years and have many 

missing values.  

 

5.3 Quantifying the effects of Training  
Our key qualitative conclusions are first, that there is a significant impact of 

training on productivity and second, that the effects of training on productivity 

are larger than the effects of training on wages. But quantitatively, how 

economically significant is the magnitude of the training effect?  

 

Interpreting the magnitude of the coefficients is difficult, but the implied effects 

are large. From Tables 1 and 2 we conservatively take the coefficient on 

training in the productivity regressions to be about 0.6 and the coefficient on 

training in the wage regressions to be about 0.3. This would imply a 10 

percentage point increase in the training measure is associated with a 6% 

increase in productivity and a 3% increase in wages.  

 
Relative to the returns to schooling literature the training impacts appear 

high33 (although Dearden et al, 2000, show that our estimates of the training 

effects on wages are actually quite low compared to existing UK estimates 

                                                                                                                             
gender*marriage interactions, race, SMSA and regional dummies. The data were kindly provided by 
Steve Pischke (see Acemoglu and Pishcke, 2002, for details). 
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such as Booth, 1993, and Blundell et al, 1996). Card (1999) puts the impact of 

a year of schooling on wages at about 10%, so our baseline impact of 0.3 is 

about three times as large. Given that the typical time in training during the 

four week period is under a month (the median is two weeks, the average is 

higher), the returns to a month of training appear even more impressive. For 

example an increase in our key variable, TRAIN, of 10% would imply a typical 

worker only spent 5% extra of his time in training if training spells were on 

average 2 weeks long. 

 

Of course, there may be remaining econometric problems we have still not 

controlled for generating this difference. But assuming the training effect is not 

a statistical artifact there remain at least two possible explanations for the 

larger size of the training coefficients compared to conventional estimates of 

the return to schooling. First, work-related training may have a higher private 

return than schooling as training is more directed at raising productivity in 

employment. Training is also likely to have a faster rate of depreciation than 

schooling, so it requires a higher year on year return in order to give 

incentives for investment34. Secondly, there may be externalities associated 

with training that are missed in the conventional schooling literature which 

focuses on private returns whereas we look at returns to the industry as a 

whole (cf. Moretti, 2004). 

 

To investigate the externality issue we estimated some individual level wage 

regressions on the LFS panel. If the private returns to training are higher than 

the social returns we might expect to see a similarly high coefficient in the 

individual level wage regression. We used the individual level equivalents of 

the variables in the industry level regressions. To construct the proportion of 

the year spent in training we used the LFS panel which follows individuals for 

5 quarters and asks individuals the training question in each quarter. We 

defined a dummy variable (TRAIND4) indicating whether the individual had 

                                                                                                                             
33 Compared to existing UK estimates of the training effects on wages (e.g. Booth, 1993 and Blundell 
et al, 1996) our estimates are actually lower (see Dearden et al, 2000, for a detailed comparison). 
34 See Heckman et al (2003) for a recent discussion of interpretation of the schooling coefficient in 
wage regressions. 
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been involved in some training in all of the previous four quarters. We also 

defined dummies for if the individual had been in training for 3 quarters 

(TRAIND3), 2 quarters (TRAIND2), one quarter (TRAIND1) or not at all 

(TRAIND0). Using TRAIND0 as the omitted base the results we obtained from 

a typical regression were35: 

 

controlsTRAIND
TRAINDTRAINDTRAINDwage

++
++=

1)015(.078.
2)019(.125.3)023(.092.4)033(.165.)ln(

 

 

Longer lengths of time in training are associated with significantly higher 

wages36. The coefficient on receiving training in all four quarters is 0.165; this 

is comparable with the industry level coefficient of 0.350. Taken literally this 

would suggest that about half of the impact of training on wages at the 

industry level is attributable to externalities.           

 

If we include a set of industry dummies (which will include potential spillovers) 

the coefficient on TRAIND4 falls from 0.16 to 0.13. If we also include the initial 

wage in the first quarter (to control for unobserved heterogeneity) then the 

coefficient falls even further to 0.079. So these impacts of a “year” of training 

are rather similar to the conventional impacts of the returns to a year in 

school.   

 

Our conclusion from this exercise is that the larger magnitude of the training 

effects in this paper primarily reflects our strategy of estimating at a level 

above the individual worker. This was forced upon us by the absence of 

adequate data on firm productivity and training, but also because of our desire 

to incorporate externalities. The results are therefore consistent with a story 

which stresses externalities to training. 

 

                                            
35 Estimation was by OLS with robust standard errors are in parentheses. Controls include gender, age, 
areas (20), employer size, occupational dummies (8), no qualification dummy, and a dummy for part-
time status. Results are for the production sector only. The quarterly LFS panel 1997-1998 was used as 
two wage observations per individual did not exist in the LFS prior to this. There were 3998 
observations and full results available on request from the authors.  
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Even if there remain econometric problems that have caused us to have 

overestimated the impact of training at the industry level, it is hard to see why 

this would not also bias upwards the training coefficient in the production 

function and wage equations to a similar extent. Therefore, even if one 

disputes the exact quantitative magnitude of the training effect, our key 

qualitative conclusion that the productivity impact of training is much greater 

than the wage impact should still be valid (that is also a feature of the firm 

level results in Appendix B). 

 

6. Conclusions 
In this paper we have examined the issue of the impact of private sector 

training on productivity. Rather than simply use wages as a measure of 

productivity we present (for the first time) estimates of the impact of training 

on productivity over a long time period.  We have assembled a data set which 

aggregates individual level data on training and establishment data on 

productivity and investment into an industry panel covering 1983-1996. We 

control for unobserved heterogeneity and the potential endogeneity of training 

using a variety of methods including GMM system estimation. 

 

Using this new data, we identify a statistically and economically significant 

effect of training on value added per head in the UK. An increase of one 

percentage point in the proportion of employees trained is associated with 

about a 0.6% percent increase in productivity and a 0.3% increase in wages.  

 

We argued that the methodologies in the existing literature may underestimate 

the importance of training. The focus on wages as the only relevant measure 

of productivity ignores the additional productivity benefits the firm may 

capture. Throughout our results we found that the overall effect of training on 

productivity was around twice as large as the effects on wages (even using 

firm level data). This result could occur even under standard specific human 

capital theory. But it could also arise for a number of other reasons due to 

                                                                                                                             
36 The training effects are not monotonic. There is even a perverse fall in the coefficient on being in 
training 3 relative to 2 quarters, although the coefficients are not significantly different. 
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imperfect competition in the labour market (and we present some evidence 

consistent with this hypothesis). Clearly further research is needed to 

distinguish between these different theories. 

 

Finally, a comparison between the industry and individual level wage 

regressions suggests that our industry level analysis may capture externalities 

from training that are missed out in the micro-level studies. An important 

avenue of future research would include probing the returns to training by 

combining enterprise data with industry-level data to investigate the 

externalities story in greater detail.  
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A. Data Appendix  

A.1 Data construction for industry panel 
The database we construct combines several sources. The critical individual 
level source is UK Labour Force Survey (LFS) which covered. LFS is a large-
scale household interview based survey of individuals in the UK which has 
been carried out on varying bases since 197537. Around 60,000 households 
have been interviewed per survey since 1984. The LFS data are useful for our 
purposes as they contain detailed information on: 
• the extent and types of training undertaken by employees in the survey; 
• personal characteristics of interviewees (e.g.  age, sex, region); 
• the skills of individuals (educational qualifications and occupation); 
• some basic workplace characteristics (e.g. employer size, industry); 
• job characteristics of employees (e.g. job tenure, hours of work). 
 
We work with this information aggregated into proportions and/or averages by 
(broadly) three digit SIC80 industry. Our sample includes all employed men 
and women aged between 16 and 64 inclusive (i.e. employees plus the self-
employed) for whom there was information on the industry under which their 
employment was classified. 
 
The main training question asked to employees in the Labour Force Survey 
between 1983 and 1996 was, “over the 4 weeks ending Sunday … have you 
taken part in any education or training connected with your job, or a job that 
you might be able to do in the future … ?” Figure A.1 below shows the 
average proportions of employees undertaking training in each year of the 
LFS sample. It shows a reasonably steady increase in the proportion of 
employees in the LFS receiving training in the 1980s38. From 1990 onwards, 
the proportion of employees receiving training stabilises at around 14% and 
stays at or around this level for the rest of the sample period.  
 
We did some simple decomposition analyses to investigate whether the 
increase in aggregate training was due to the growth in size of industries 
which are (and always have been) relatively more training intensive. It turns 
out that this is only a minor factor: over 95% of the increase in aggregate 
training is due to an increase within a large number of different sectors39. This 
                                            
37 Between 1975 and 1983 the survey was conducted every two years; from 1984 until 1991 it was 
conducted annually. Since 1992 the Labour Force survey has been conducted every three months in a 
five-quarter rolling panel format. 
38 It should be noted that the figure of around 5% for 1983 is almost certainly an underestimate because 
in 1983 the 4 week training question was only asked of employees under 50, whereas in all subsequent 
years it was asked of employees over 50 and under 65 as well. However, even if the training measure is 
calculated as the proportion of employees aged under 50 receiving training in every year, the figure for 
1983 is still lower than for 1984. 
39 The change of training propensity over a given period. can be decomposed into a within-industry and 
a between-industry component: i

i
ii

i
i STTST ∑∑ ∆+∆=∆  where T = proportion of workers 

undertaking training, S = share of industry i in total employment, a bar denotes a mean over time and 
the delta is the difference over the same two time periods.  
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is consistent with the findings of other papers which have found that the 
aggregate growth of education or occupational skills is essentially a within 
industry phenomenon (e.g. Machin and Van Reenen, 1998). 
 
 

Figure A.1. Overall Training Incidence, Labour Force Survey, 1983-96 
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LFS also has further information on the type of training received (although not 
all of these are asked in each year). For example, the questionnaire 
distinguishes between “on-the-job” training (e.g. learning by example and 
practice while doing the job) and “off-the-job” training (training conducted as a 
formal training course). Whilst the incidence of on-the-job training reported in 
the LFS has been more or less constant since the mid-1980s, the proportion 
of workers receiving some off-the-job training in the 4 weeks prior to being 
surveyed rose from about 5% in 1984 to 8% in the early 1990s. Other 
indicators of training (not asked in every year) include the duration of training, 
whether it was employer funded, whether it was completed or still ongoing. 
We examined whether there were differential productivity effects for all these 
different types of training, but could find no significantly different coefficients40.  
 
 
                                                                                                                             
 
40 The measure or training used takes no account of the intensity or length of the training course (except 
insofar as a longer training course is more likely to fall within the 4-week period prior to the survey). 
There is some evidence that the length of training has been falling since the later 1980s (for a detailed 
analysis see Felstead et. al. (1997)). However, when we estimate training effects separately for each 
year of the LFS sample, the magnitude of the training effect does not differ significantly over time.  
One might expect a decrease in the productivity effect of the training measure for the later years if the 
average quality of training courses has declined (there was no evidence of this in our data). 
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The second major dataset we use is the Annual Census of Production 
(ACOP). This gives production statistics on capital, labour and output for 
industries in the manufacturing, energy and water sectors (collectively known 
as the production sector of the economy). It is based on the ARD (Annual 
Respondents Database) which is a survey of all production establishments 
(plants) in the UK with 100 or more employees, plus a subset of 
establishments with less than 100 employees. We use the COP data on value 
added, gross output, investment, employment and wages for industries in the 
manufacturing sector and the energy and water industries.   
 
Capital stocks were calculated using the perpetual inventory method drawing 
on NIESR’s estimates on initial capital stocks (see O’Mahony and Oulton, 
1990). All the nominal measures were deflated with three digit industry price 
indices from ONS. For the services industries we drew on the ISDB 
(InterSectoral DataBase) compiled by the OECD.  
 
There was a change in SIC classification in 1992 which forced us to 
aggregate some of the industries and prevented us from using some of the 
industries after the change. Additionally, we insisted on having at least 25 
individuals in each cell in each year. After matching the aggregated individual 
data from LFS we were left with 94 industry groupings over (a maximum of) 
14 years41 (85 in the production sectors) 
 
Means of the variables are given in Table A1 broken down by high and low 
training sectors.  
 
A.2 Calculating the Training Stock 
The main results use the flow in training, but we also report some experiments 
with an estimate of the stock of trained workers in an industry. If we define the 
stock of people who have been trained in the industry at time t as NT

t and the 
flow as MT

t then if the stock evolves according to the standard perpetual 
inventory formula it can be expressed as: 
 
                 NT

t = MT
t   + (1-δ) NT

t-1                                                                                           
 
where δ is the rate at which the stock of effectively trained workers at time t 
decay in their productive usefulness by t+1. This training depreciation rate 
represents several things. First, individuals will move away from the industry, 
so their training can no longer contribute to the industry’s human capital stock. 
Second, the usefulness of training will decline over time as old knowledge 
becomes obsolete and people forget (e.g. knowledge of the DOS operating 
system). Third to the extent that training is firm-specific, turnover between 
firms in the same industry may reduce industry productivity. Although we 
obtain some measures of turnover using the LFS, the second element of 
depreciation is essentially unknown. Because of this uncertainty our baseline 
results simply use the proportion of workers trained in an industry (TRAIN in 
                                            
41 Full details on how the data was set can be obtained from the authors or in Dearden, Reed and Van 
Reenen (2000). 
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equation (3)). This will be equal to the stock when δ=1. Nevertheless, we also 
estimate the training stock. We used the average worker turnover rate as one 
element of depreciation and then added an extra “exogenous element” 
varying between 0.2 and 0.6. We also need to make an assumption over the 
initial stock in 1983. We assume that the steady state growth (g) rate of the 
training stock is 2% per annum which enables a first year approximation of the 
stock as MT

83/(g+δ).  The qualitative results are quite robust over different 
measures42.  
 

A.3 Firm Level Data 

The firm level data is based on the “Survey on Human Resource Practices 
and Corporate Value in the Modern Corporation” conducted in 1996 by Martin 
Conyon (See Conyon and Reed, 1999). The relevant training variable was 
q23f “How have the following training strategies used by your company 
changed between 1990 and 1995…The percentage of company sales 
turnover spent on training has increased/decreased/not changed”. 135 firms 
gave some response to this question. We matched this survey to company 
accounting data from Datastream (data between 1968 and 1997). We 
discarded firms with missing values on the training and accounting variables 
leaving us with a sample of 119 companies. 
 
Productivity was measured by real sales (Datastream Item 104) per worker 
(Item 219). Capital is the historical book value (Item 330) and wages were 
estimated as total remuneration (Item 215) divided by the number of workers 
(Item 219). All accounts are consolidated. 

                                            
42 See the discussion around Table 3 Row 2 in the main text. We also considered looking at 
the inflows of trained workers from other industries to improve the stock measure, but the LFS 
sample of industry switchers was too small to construct the full three digit flow matrix. 
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Table A1 
Means of Variables by High and Low Training Industries 

Variable Mean (low training 
industries)

Mean (high training 
industries)

proportion of male employees 62.4% 80.9%
proportion aged: 16-24 22.7% 15.5%
                          : 25-34 24.5% 25.4%
                          : 35-44 22.2% 24.0%
                          : 45-54 19.1% 22.1%
                          : 55-64 11.1% 12.8%
proportion in occupation: 
      :professional/managerial 14.7% 27.1%
      :clerical 8.5% 10.9%
      :personal/security 1.9% 1.6%
      :salesforce/technical 3.4% 2.5%
      :other occupations 71.5% 58.0%
highest qualification: 
      :degree 2.6% 7.3%
      :sub-degree level 3.7% 9.2%
      :A level / equivalent 15.5% 22.5%
      :O level/ equivalent 15.6% 14.3%
      :other/none/missing 62.7% 46.7%
tenure in current job: 
      :less than 6 months 10.9% 7.1%
      :6 months – 1 year 8.4% 5.8%
      :1 year – 2 years 11.1% 8.0%
      :2 years – 5 years  21.6% 17.8%
      :5 years – 10 years 18.8% 19.7%
      :10 years – 20 years  18.0% 24.3%
      :more than 20 years 9.0% 16.5%
proportion in small firm 21.2% 12.6%
average log capital-labour ratio 2.22 3.02
average log real value added per 
worker 

2.76 3.19

average log gross output per worker 3.80 4.27
average log hourly wages 1.56 1.84
average hours worked 39.1 40.2
average R&D spend as proportion of 
output 

0.52 2.99

 

Notes  
`High Training’ industries are those that trained on average more than 8.7% of 
employees (the sample median). 
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Appendix B – additional Results 
 
B1. Some firm level results 
As a preliminary investigation of the impact of training on productivity we 
turned to the only UK dataset we know of that combines training data and 
objective productivity measures at the firm level. We constructed this by 
combining a firm survey with company accounting data from Datastream (see 
Data Appendix for details). We estimated an OLS production function in long 
differences (1995-1990) with results summarized in Table B1. The drawback 
of the firm level training data is we only know whether a firm increased the 
percentage of turnover allocated to training over this time period and not the 
actual quantitative change, so the table is simply illustrative. 
 
The first and second columns of Table B1 give results for productivity and the 
third and fourth columns have the results for wages. The second and fourth 
columns condition on industry dummies. In columns (1) and (3) the indicator 
for the change in training is positively and significantly associated with both 
productivity changes and with wage changes. Interestingly, the magnitude of 
the association with productivity is about twice as large as the magnitude of 
the association with wages. We uncovered a similar finding when we 
examined the industry level data43. A second feature of Table B1 is that much 
of the association between training, productivity and wages is due to industry 
level (growth) effects. The coefficient on training falls by half in the productivity 
regression when sector dummies are added (column 2) and by three quarters 
in the wage equation (column 4). The training effects are no longer significant. 
This implies that a substantial element of the training correlation is due to 
industry growth effects. It is these changes over a much longer time period 
that we exploited in the main part of the paper44.  
 
B2. More detailed industry results 
Table B2 reports the unrestricted coefficient estimates underlying Table 2 in 
the main text and the restricted estimates of the production function 
parameters after imposing the COMFAC restrictions. If we took the 
unrestricted coefficients our preferred models in columns (1) and (4) would 
suggest a larger magnitude of the long-run impact of training on productivity45 
(2.289) of training on wages (1.215). The qualitative finding that the 
productivity effect is twice the size of the wage effect remains unaltered. 
 
 

                                            
43 Given the size of the sample, it is not surprising that the difference in training coefficients is not 
significant (p-value=.23, allowing for cross equation correlation of the errors through SUR). 
44 In the spirit of looking for complementarities (Ichinowski et al, 1997) we investigated allowing for 
interactions between changes in training and changes in many other features of the firm – merit pay 
across four different skill groups, employee involvement, retention, flexibility, three types of 
delayering, share options, teamwork, competition, etc. With the exception of merit pay for managers 
(which was significant at the 10% level) none of these interactions were statistically significant. It is 
worth noting that neither Black and Lynch (1997) nor Bartel (1995) find strong evidence of such 
interactions in their data. 
45 i.e. using )1/()( 132 πππ −+  in the context of equation (14). 
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Table B1: Training, Productivity and Wages at the firm level 
Long-differences 1995-1990 
 
 (1) (2) (3) (4) 

Dependent 
variable: 

Mean change in ln(Sales per worker) Mean change in ln(Average Wage) 

Growth in 
Training as a 
percentage of 
turnover  

.021 
(.009) 

.010 
(.010) 

.012 
(.006) 

.003 

(.007) 

Mean change in 
ln(Capital per 
worker) 

.139 
(.045) 

.159 
(.049) 

.066 
(.032) 

.103 

(.033) 

Sector dummies 

(32) 

No Yes No Yes 

     

Observations 119 119 119 119 

R2 .41 .62 .22 .63 

 
Notes 
Estimation by OLS in long differences (average 1995-1990); robust standard errors under coefficients. All 
regressions include controls for the growth in employment and whether there was an increase in the proportion of 
skills (4 groups: managers, clerical, skilled manual, unskilled manual), of females, and of part timers. These are all 
continuous variables. “Growth in Training as a percentage of turnover” is a dummy variable indicating whether 
training grew as a percentage of turnover between 1990 and 1995. 
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Table B2: Detailed GMM results 
 (1) (2) (3) (4) 
 Ln(real value added per worker) Ln(Wages) 
Constrained – COMFAC Imposed 
Training .602 

(.181) 
1.043 
(.325) 

.141 
(.067) 

           .351 
          (.106) 

log(capital/worker) .327 
(.016) 

.325 
(.016) 

.188 
(.006) 

.106 
(.011) 

log(hours/worker) .498 
(.064) 

.519 
(.062) 

.518 
(.031) 

.489 
(.027) 

Lagged R&D 
Intensity 

1.905 
(.262) 

1.538 
(.340) 

.226 
(.159) 

.443 
(.271) 

% employees who 
are professionals or 
managers 

.306 
(.068) 

.327 
(.074) 

.306 
(.068) 

.160 
(.034) 

     
years 1984-1996 1985-1996 1984-1996 1985-1996 

NT 898 833 898 883 
Autocorrelation 
coefficient 
(ρ) 

.741 
(.014) 

.758 
(.014) 

.822 
(.009) 

.797 
(.013) 

LM1 (d.f.) 
[p-value] 

-4.892(85) 
[0.00] 

-4.513(85) 
[0.00] 

-5.444(85) 
[0.00] 

-6.053(85) 
[0.00] 

LM2 (d.f.) 
 [p-value] 

.-.940(85) 
[.347] 

-.674(85) 
[.500] 

-2.003 
[.045] 

-1.44(85) 
[.158] 

Sargan (d.f.) 8.819(121) 6.605(146) 11.03(121) 11.83(146) 
Instruments (TRAIN)t-2,t-3, 

Ln(Q/N)t-2,,t-3, 
ln(Hrs/N)t-2,t-3 
ln(K/N)t-2,t-3  in 
differenced 
equations; 
∆(TRAIN)t-1, , 
∆ln(Hrs/N)t-1  
∆ln(K/N)t-1 in 
the levels 
equations. 

(TRAIN)t-3,..,t-5, 
Ln(Q/N)t-3,..,t-5, 
ln(Hrs/N)t-3,...t-5, 
ln(K/N)t-3,...t-5  in 
differenced 
equations; 
∆(TRAIN)t-2,  
∆ln(Hrs/N)t-2  
∆ln(K/N)t-2 in the 
levels equations. 

(same as column 
1) (TRAIN)t-2,t-3, 

Ln(Q/N)t-2,,t-3, 
ln(Hrs/N)t-2,t-3 
ln(K/N)t-2,t-3  in 
differenced 
equations; 
∆(TRAIN)t-1, , 
∆ln(Hrs/N)t-1  
∆ln(K/N)t-1 in the 
levels equations. 

(same as column 
2) (TRAIN)t-3,..,t-5, 

Ln(Q/N)t-3,..,t-5, 
ln(Hrs/N)t-3,...t-5, 
ln(K/N)t-3,...t-5  in 
differenced 
equations; 
∆(TRAIN)t-2,  
∆ln(Hrs/N)t-2  
∆ln(K/N)t-2 in the 
levels equations. 

Unconstrained (COMFAC not imposed) 
Lagged dependent 
variable 

.543 
(.058) 

.599 
(.063) 

.707 
(.035) 

.624 
(.045) 

Trainingt .930 
(.465) 

.652 
(.412) 

.248 
(.165) 

.302 
(.149) 

Training t-1 .116 
(.265) 

-.969 
(.648) 

-.085 
(.134) 

.272 
(.289) 

log(capital/worker) t .278 
(.073) 

.323 
(.056) 

.120 
(.051) 

.028 
(.037) 

log(capital/worker) t-1 -.156 
(.063) 

-.104 
(.063) 

-.078 
(.044) 

.020 
(.033) 

log(hours/worker) t .495 
(.165) 

.434 
(.123) 

.359 
(.064) 

.480 
(.079) 

log(hours/worker) t-1 -.422 
(.232) 

-.397 
(.169) 

-.189 
(.114) 

-.362 
(.100) 

R&D 
Intensity t-1 

1.248 
(.605) 

1.137 
(.669) 

.549 
(.323) 

.551 
(.334) 

R&D 
Intensity t-2 

-1.157 
(.672) 

-.671 
(.740) 

-.493 
(.311) 

.592 
(.354) 

Managerial t 
proportion 

.446 
(.129) 

.392 
(.136) 

.125 
(.056) 

.113 
(.070) 
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Managerial 
proportion t-1 

-.148 
(.129) 

-.173 
(.113) 

-.044 
(.087) 

-.054 
(.087) 

 
Notes 
These report a fuller set of results than those in Table 2 (which correspond to the first and last columns of Table 
B2). Estimation by GMM-SYS in Arellano and Bond (1998) DPD-98 package written in GAUSS; all regressions 
include the current values of all the variables in Table 2 columns (3) and (6) (i.e. turnover, other occupations, 
qualifications, age, tenure, gender, region, firm size and time dummies). Capital intensity, training, hours and 
lagged productivity are always treated as endogenous. The other variables are assumed weakly exogenous. One 
step standard errors (robust to arbitrary heteroskedacity and autocorrelation) in parentheses under 
coefficients; LM1(2) is a Lagrange Multiplier test of first (second) order serial correlation distributed N[1,0] 
under the null (see Arellano and Bond, 1991); Sargan is a Chi-squared test of the over-identifying restrictions; 
observations weighted by number of individuals in an LFS industry cell. 
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