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Abstract

Eight distinct (and in some cases little known) formulations of the Travelling
Salesman Problem as an Integer Programme are given. Apart from the standard
formulation all the formulations are ‘compact’ in the sense that the number of
constraints and variables is a polynomial function of the number of cities in the
problem. Comparisons of the formulations are made by projecting out variables in
order to produce polytopes in the same space. It is then possible to compare the
strengths of the Linear Programming relaxations. These results are illustrated by
computational results on asmall problem.
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1. Introduction

In this paper we survey eght different formulations of the Asymmetric Traveling Saesman Problem
(ATSP) as an Integer Programme (IP). We choose to treat the Asymmetric case as being more
genera than the Symmetric case. Some of the work has been published elsewhere by other authors.
Our purposeis, however, to provide new results aswell as present a unifying framework.

In Section 2 we present the eight formulations dassfying them as ‘conventiond’ (C), “sequentid”
(9), “flow based” (F) and “time staged” (T). The reasons for these terms will become apparent. In
order to facilitate comparison between the formulations, in some cases we introduce extra variables
which equate to expressions within the models. This enables us, in Section 3, to compare the Linear
Programming (LP) relaxaions of dl the formulations by projecting out al, but the, common

Page 1



variables. Such comparisons have adready been done for some of the formulations by Padberg and
Sung (1991), Wong (1980) and Langevin et a (1990).

Some of the time staged formulations have a so been compared by Gouveiaand Voss (1995)

and discussed by Picard and Queyranne (1978). The sequentia formulation has aso been improved
by Gouveia and Pires (2001). The extra variables incorporated in this formulation have been used
by Sherdi and Driscoll (2002) to further tighten the Linear Programming relaxation.

Comparisons have aso been made for some formulations of the Symmetric TSP by Carr (1996)
and Arthanari and Usha (2000).

We unify dl these resullts in the same framework.

In Section 4 we present computationda results on a smdl illudrative example in order to verify the
results of Section 3.

2. Eight Formulations of the ATSP

Indl our formulations we will teke the set of citiesasN = {1, 2, ..., n} and define variables

Xij =1iff arc(i,j) isalink in the tour
=0otherwise (it |)
Cj will be taken asthe length of arc (i)

The objective function will be:

o

Minimise a ¢ X (1)
ij
it
2.1 Conventional Formulation (C) (Dantzig, Fulkerson and Johnson (1954))
ax =1 TN )
j
jti
[o] A
ax =1 jIN ©)
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ax £/M-1 " MiNsuchthat{}i M Mm|3 2 (4)
ijiMm
in]

(thesymbol * | * represents proper inclusion)

Thisformulaion has 2" + 2n - 2 congraints and n(n - 1) 0-1 varidbles.

The exponentid number of condraints makes it impracticd to solve directly. Hence, the usud
procedure is to apply the Assgnment congraints (2) and (3) and append only those Subtour
Elimination condraints (4) when violated. Alternativey, different rdlaxations such as the LP
relaxation or the Spanning-2 Tree relaxation can be applied and solved iteratively. A reference to
these methodsis Lawler et d (1995).

A variant of the above formulation (which we will not classfy as a different formulation) isto replace
congraints (4) by:

ax 31 " M N where{l} Mand M=N-M (5)
il
il

z|lz

Congtraints (5) can be obtained by adding constraints (2) for il M and subtracting from (4).

2.2 Sequential Formulation (S) (Miller, Tucker and Zemlin (1960))

Congraints (2) and (3) are retained but we introduce (continuous) variables

U = sequencein which city i isvigted (it 1)

and condraints

U-U+nx;En-1 " TN-{1},i] (6)

This formulation hes n® - n + 2 congtraints, n(n - 1) 0-1 variables and (n - 1) continuous variables.

2.3 Flow Based For mulations

SINGLE COMMODITY FLow (F1) (Gavish and Graves (1978))
Congtraints (2) and (3) are retained but we aso introduce (continuous) variables:

Page 3



yi = ‘How' inanarc (i,j) it}

and condraints.

Yi £ (n- 1)x; "ijTN,itj )
ay, =n-1 )
"

ay,-ay=1 " TN-{1 ©)

it ik

Congtraints (8) and (9) restrict n - 1 units of asingle commodity to flow into city 1 and 1 unit to flow
out of each of the other cities. Flow can only teke place in an arc if it exigts by virtue of congtraints

(7).
It is possible to improve thisformulation (F1') by tightening congtraints (7) for i=1 to:
yij £ (n - 2)x; "TN-{1}, it (10)

This relies on the observation that at most n - 2 units can flow dong any arc not out of city 1. We
are not aware of any other authors having recognised this improvement.

Thisformulation has n(n + 2) congtraints, n(n - 1) 0-1 variables and n(n - 1) continuous variables.
Two ComMoDITY FLow (F2) (Finke, Claus and Gunn (1983))
Congtraints (2) and (3) are retained but we aso introduce (continuous) variables:

yij = ‘Flow’ of commodity Linarc(i,j) it j
z; = ‘Flow’ of commodity 2inarc (i,j) it j

and condraints.

éj- (ylj - yjl) =n-1 (11)

jt1
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aly,-y)=-1 " N-{1}, it (12)

& (- 2:)=-00-1 (13)
éjl(zij-z“)=1 " N-{1, 1] (14)
é}(y” +z,)=n-1 i N (15)
Vi + 2= (- 1)x, TN (16)

Condtraints (11) and (12) force (n - 1) units of commodity 1 to flow in at city 1 and 1 unit to flow
out at every other city. Congraints (13) and (14) force (n - 1) units of commodity 2 to flow out at
city 1 and 1 unit to flow in a every other city. Condraints (15) force exactly f - 1) units of
combined commodity in each arc. Congraints (16) only alow flow in an arc if present.
Thisformulation has n(n + 4) congtraints, n(n - 1) 0-1 variables and 2n(n- 1) continuous variables.
MuLTI-CoMmOoDITY FLow (F3) (Wong(1980) and Claus (1984))

Congraints (2) and (3) are retained but we also introduce (continuous) variables:

yi“="Flow’ of commodity k inarc (i,j)

and condraints:

Vi £ X "ijkT N 17)
avyi=1 " kT N-{1 (18)
a ys=0 * k1 N-{1) (19)
avyi=1 " k1 N-{1} (20)
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ays=0 " kT N-{1} (21)
j
ay-ays=o " kT N-{1}, )2k (22)

Congraints (17) only dlow flow in an arc which is present. Congraints (18) force exactly one unit of
each commodity to flow in at city 1 and @ndrants (19) prevent any commodity out at city 1.
Congraints (20) force exactly one unit of commodity k to flow out a city k and congtraints (21)
prevent any of commodity k flowing in a dty k. Congraints (22) force ‘materid’ baance for all
commaodities a each city, gpart from city 1 and for commaodity k &t city k.

This formulation has n® + n? + 6n - 3 congtraints, n(n - 1) 0-1 variables and n(n - 1)? continuous
variables.

2.4 Time Staged Formulations

1sT STAGE DEPENDENT T1 (Fox, Gavish and Graves (1980))
In order to facilitate comparisons with the other formulations it is convenient, but not necessary, to
retain the variables x;; (linked to the other variables by congtraints (25)) and constraints (2) and (3).

We introduce O-1 integer varigbles:

yi' =1 if arc (i,)) istraversed at stage t
=0 otherwise

and condraints.

,jt

égtmj- “ Aty =1 " il N-{1} (24)

], k,t

t32

X, - &yl =0 " TN, it (29)
t

In addition we impose the conditions:
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(26)

Condgtraints (24) guarantee that if a city is entered at Staget it isleft a saget + 1. Removing certain
variables by conditions (26) forces city 1 to be left only at stage 1 and entered only at stage n.

It is not necessary to place upper bounds of 1 on the variables x; , and this condition may be
violated in the LP relaxation.

Thismodd has n(n + 2) congraints and n(n - 1)(n + 1) 0-1 variables. Clearly, but for congraints
(25) and variables x; this mode would be even more compact having only n constraints and n (1)
vaiables. This is a remarkable formulation for this reason dthough, as will be shown in the next
section it is aso remarkably bad in terms of the strength of its Linear Programming relaxation and
therefore the downess of its overdl running time.

2ND STAGE DEPENDENT T2 (Fox, Gavish and Graves (1980)))

We usethe samevariablesasin T1 and congraints (2) , (3) and (25) together with:

avy =1 "iT N (27)
it
it ]
av =1 "iT N (28)
jt
jti
ay, =1 "t1 N (29)
it
aty -ty =1 "l N-{1} (30)
it

k,t
t32

Clearly thisisadisaggregated form of T 1.

Thismodel has 41 congtraintsand n(n - 1)(n + 1) 0-1 variables. Again but for the congraints (25)
and variables x; thiswould be smdler. In fact the ;' variables can, in this formulation, be regarded
as continuous.

Page 7



3RD STAGE DEPENDENT T3 (Vgda (1961))

Weusethe samevariablesasin T1 and T2 and condraints (2) , (3) and (25) together with:

avy,=1 (31)

j

avi= (32)
ay-ayst=o0 "t N-{1} (33)
j k

Congraint (31) forces city 1 to be left at stage 1 and congtraint (32) forces it to be entered at stage
n. Congraints (33) have the same effect as (24).

This modd has ? - n + 3 congtraints and n(n - 1)(n + 1) 0-1 variables which again could be
reduced by leaving out congtraints (25) and variables x; . Aganthey;' variables can be regarded as
continuous.

All the formulaions, gpart from C, have a polynomid (in n) number of congraints. This makes them
superficidly more attractive than C. However, the number of congraints may gill be large, for
practicaly szed n, and the LP relaxations weaker. These considerations are discussed in the next
section.

3. Comparison of LP Formulations

All formulations presented in Section 2 can be expressed in the form:

Minimise CX
subject to Ax+By ~ b where*~ represents‘<‘ and ‘=’ relations. (34
X,y* 0

X isthe vector of variables x;; and y the different vectors used in the formulations S, Fand T. In the
caseof Sand F y represents continuous variables but in the case of T integer variables.
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In order to facilitate comparisons between the formulation S, F with C we can project out the
continuous varigbles y to creste amodd involving only X. The size of the polytopes of the associated
L P relaxations can then be compared. We will denote the polytope of the resultant LP relaxation of
a(projected) model M as P(M). In the case of formulation T1 the variablesy must be integer. The
projection out of such variables is more complex and may not even result in an IP (see Kirby and
Williams (1997)). However, we can ill project out the variables y from the LP relaxation and
return an IP. The LP relaxation of this IP will be wesaker than that resulting from the true projection.
It will ill, however, be avadid comparator of computationd difficulty when LP based IP methods
are used. Therefore we will continue to use the notation P(M) for the resulting polytope when
projecting out the LP relaxations of the variablesy in T1.

In order to project out the variables y in dl the formulations we can use Fourier-Motzkin dimingtion
(see Williams (1986)) or equivaently full Benders Decomposition (1962). Martin (1999) gives a full
genera description of the methods of projection. We do not reproduce the derivation of the
methods here but smply restate them. The projection out of the variables y is effected by finding dl
real vectorsw, of gppropriate dimension, such that,

w B3 0 (35)

Where w has non-negative entries corresponding to rows of (34) with ‘£° condraints and
uncongtrained entries in rows with ‘=" condraints.. The set of w satisfying (35) form a convex
polyhedra cone and can be characterised by its extreme rays. It is therefore sufficient to seek the
finite st of w representing extreme rays, which are what would be obtained by (restricted) Fourier-
Motzkin dimination. We denote these as rows of the matrix Q. Applying Q to (34) gives.

QAX £ Qb (36)

as an dternative formulation to C. Of course, as would be expected, (36) will have an exponentia
number of congraints, unlike (34), but isin the same space as C.

We present the effect of the matrix Q for each of the formulations S, F and T of Section 2.

FORMULATION S
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The effect of Q isto diminate u,, Us, ..., U, from dl the inequditiesin (6). This is done by adding
those inequalities around each directed cycle M1 N, where 1I M. This results in inequdlities (for
each subset Mi N by virtue of (2) and (3))

(37)

(together with the equations (2), (3) and non-negdivity).
M| . .
Clearly M| - 1<|M|- % snceMl N

Since cycles are subsets of their associated sets this demongtrates that
P(S) E P(C) (38)

(strict inclusion can be proved by numericd examples).

Therefore the LP rdaxation associated with S will be weaker than that associated with C. This result
has aready been obtained by Wong (1980) and Padberg and Sung (1991).

FORMULATION F1

The effect of Qisto, for each (subset) M1 N, where 11 M, create

Clearly M| - 1<[M]- %qw_ M|
demongtrating that
P(S) E P(F1) E P(C) )
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(gtrict inclusion can again be proved by numerica examples).

This result is adso obtained by Wong (1980).

Applying the same eimination procedure to the modified formulation (F1') we obtain

1 [¢} [¢}
— ax+ax £|M|-—— (41)
n'liiﬁ-{l)}(” ijTM] | | n-1
jIM
. 1 M
Clearly, by virtueof (2) and (3), —— & X, £1- Ml
n-1:% o n-1
™M

Hence P(F1) E P(F1) (42)

(Strict inclusion can again be proved by numerica examples).
FORMULATION F2

If z; are interpreted as the ‘dack’ variables in (16) we can use (16) to substitute them out reducing
this formulation to F1. This demonstrates that

P(F2) = P(F1) (43)
Thisresult isaso given by Langevin et d (1990).

FORMULATION F3
The effect of Qisto, for each Mi N,where 11 M, create

ax £M-1 (44)

iji™m
i.e. congraints (4) of formulation C.
Hence P(F3) = P(C) (45)

This remarkable result is aso obtained by Wong (1980) and Padberg and Sung (1991)
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FORMULATION T1

The effect of Q isto, for each MI N, where 1 M, create

In the absence of assignment condraints, in this formulation, it is not possible to
convert (46) to aform similar to (4). We therefore expressit in aform amilar to (5).
Representing condraints (37) in asmilar form to (5) demongtrates that

(48)

FORMULATION T2
The effect of Q isto, for each subset M of N-{ 1}, create

(50)

However, other congtraints are a so created which, to date, it has not been possible to obtain
through the combinatoria explosion resulting from projection. Padberg and Sung give congraints
equivaent to (50) asthe projection of T1. Thisis clearly wrong.

Hence P(T2)1 P(F1) (51)

Agan drict incluson can be proved by numerica examples.

FORMULATION T3
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We have again not been able to discover the full effect of Q. However, one of the effects of the
projection isto produce congraints (50) but there are others

Hence P(C)I P(T3)1 P(T2)

Numerical examples demordirate thet the inclusion is drict.

4. Computational Results

(52)

In order to demondrate the comparative sizes of different formulations and the relative strengths of
their LP relaxations we give results below for a 10 city TSP.

Modé Size LP Obj. Iterations Time(secs) [ IPObj. Nodes | Time (secs)

C 50290

Conventional 766 37 1 766 0 1
Ass. relaxation | 804 40 1 84 0 1
+ subtours (5) | 835 43 1 835 0 1
+ subtours (3) | 878 48 1 831 9 1
+ subtours (2)

S 9299 7736 77 3 881 665 16

Sequential

F1 120*180 794.22 148 1 831 449 13

1 Commodity

F1 120*180 794.89 142 1 831 369 11

Modified

F2 140*270 794.22 229 2 881 373 12

2 Commodity

F3 857900 878 1024 7 881 9 13

Multi Commodity

T1 10*990 364.5 25 1

1* Stage Dependent

T2 120%990 799.46 246 18 881 2011 | 451

2nd Stage Dependent
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T3

3rd Stage Dependent

193*990 804.5 307 5 881 145 27

These results were obtained using the NEWMAGIC modeling language and EMSOL optimiser.

5. Concluding Remarks

Eight formulations of the ATSP as an IP have been compared. Unlike other published work in this
area the authors provide a unifying framework to conduct the comparison. Verification of the results
are obtained through a numerica example,

The authors are now investigating, in the first ingtance, srategies for the manud introduction of the
sub-tour dimination congtraints with a view to developing a fully automated procedure. Thiswork is
being down using the NEWMAGIC moddling language.
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